Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38866011

ABSTRACT

A key step for metastatic outgrowth involves the generation of a deeply altered microenvironment (niche) that supports the malignant behavior of cancer cells. The complexity of the metastatic niche has posed a significant challenge in elucidating the underlying programs driving its origin. Here, by focusing on early stages of breast cancer metastasis to the lung in mice, we describe a cancer-dependent chromatin remodeling and activation of developmental programs in alveolar type 2 (AT2) cells within the niche. We show that metastatic cells can prime AT2 cells into a reprogrammed multilineage state. In turn, this cancer-induced reprogramming of AT2 cells promoted stem-like features in cancer cells and enhanced their initiation capacity. In conclusion, we propose the concept of "reflected stemness" as an early phenomenon during metastatic niche initiation, wherein metastatic cells reprogram the local tissue into a stem-like state that enhances intrinsic cancer-initiating potential, creating a positive feedback loop where tumorigenic programs are amplified.

2.
Nature ; 616(7955): 159-167, 2023 04.
Article in English | MEDLINE | ID: mdl-37020004

ABSTRACT

A complete understanding of how exposure to environmental substances promotes cancer formation is lacking. More than 70 years ago, tumorigenesis was proposed to occur in a two-step process: an initiating step that induces mutations in healthy cells, followed by a promoter step that triggers cancer development1. Here we propose that environmental particulate matter measuring ≤2.5 µm (PM2.5), known to be associated with lung cancer risk, promotes lung cancer by acting on cells that harbour pre-existing oncogenic mutations in healthy lung tissue. Focusing on EGFR-driven lung cancer, which is more common in never-smokers or light smokers, we found a significant association between PM2.5 levels and the incidence of lung cancer for 32,957 EGFR-driven lung cancer cases in four within-country cohorts. Functional mouse models revealed that air pollutants cause an influx of macrophages into the lung and release of interleukin-1ß. This process results in a progenitor-like cell state within EGFR mutant lung alveolar type II epithelial cells that fuels tumorigenesis. Ultradeep mutational profiling of histologically normal lung tissue from 295 individuals across 3 clinical cohorts revealed oncogenic EGFR and KRAS driver mutations in 18% and 53% of healthy tissue samples, respectively. These findings collectively support a tumour-promoting role for  PM2.5 air pollutants  and provide impetus for public health policy initiatives to address air pollution to reduce disease burden.


Subject(s)
Adenocarcinoma of Lung , Air Pollutants , Air Pollution , Cell Transformation, Neoplastic , Lung Neoplasms , Animals , Mice , Adenocarcinoma of Lung/chemically induced , Adenocarcinoma of Lung/genetics , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Environmental Exposure , ErbB Receptors/genetics , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Particulate Matter/adverse effects , Particulate Matter/analysis , Particle Size , Cohort Studies , Macrophages, Alveolar/drug effects , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology
3.
Trends Cell Biol ; 32(12): 979-987, 2022 12.
Article in English | MEDLINE | ID: mdl-35589467

ABSTRACT

A fundamental requirement for cancer initiation is the activation of developmental programmes by mutant cells. Oncogenic signals often confer an undifferentiated, stem cell-like phenotype that supports the long-term proliferative potential of cancer cells. Although cancer is a genetically driven disease, mutations in cancer-driver genes alone are insufficient for tumour formation, and the proliferation of cells harbouring oncogenic mutations depends on their microenvironment. In this Opinion article we discuss how the reprogrammed status of cancer cells not only represents the essence of their tumorigenicity but triggers 'reflected stemness' in their surrounding normal counterparts. We propose that this reciprocal interaction underpins the establishment of the tumour microenvironment (TME).


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Neoplasms/genetics , Neoplasms/pathology , Stem Cells/pathology , Phenotype , Neoplastic Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...