Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37630263

ABSTRACT

Cancer is a multifactorial disease that continues to increase. Lignans are known to be important anticancer agents. However, due to the structural diversity of lignans, it is difficult to associate anticancer activity with a particular subclass. Therefore, the present study sought to evaluate the association of lignan subclasses with antitumor activity, considering the genetic profile of the variants of the selected targets. To do so, predictive models were built against the targets tyrosine-protein kinase ABL (ABL), epidermal growth factor receptor erbB1 (EGFR), histone deacetylase (HDAC), serine/threonine-protein kinase mTOR (mTOR) and poly [ADP-ribose] polymerase-1 (PARP1). Then, single nucleotide polymorphisms were mapped, target mutations were designed, and molecular docking was performed with the lignans with the best predicted biological activity. The results showed more anticancer activity in the dibenzocyclooctadiene, furofuran and aryltetralin subclasses. The lignans with the best predictive values of biological activity showed varying binding energy results in the presence of certain genetic variants.


Subject(s)
Genetic Profile , Lignans , Molecular Docking Simulation , Histone Deacetylases , Lignans/pharmacology , TOR Serine-Threonine Kinases
2.
Pathogens ; 12(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36986372

ABSTRACT

Natural products have important pharmacological activities. This study sought to investigate the activity of the compound betulinic acid (BA) against different strains of bacteria and fungi. The minimum inhibitory concentration (MIC) was determined and then the minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC). After performing the in vitro tests, molecular modeling studies were carried out to investigate the mechanism of action of BA against the selected microorganisms. The results showed that BA inhibited the growth of microbial species. Among the 12 species (Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Escherichia coli, Mycobacterium tuberculosis, Candida albicans, C. tropicalis, C. glabrata, Aspergillus flavus, Penicillium citrinum, Trichophyton rubrum, and Microsporum canis) investigated, 9 (75%) inhibited growth at a concentration of 561 µM and 1 at a concentration of 100 µM. In general, the MBC and MFC of the products were between 561 and 1122 µM. In silico studies showed that BA presented a mechanism of action against DNA gyrase and beta-lactamase targets for most of the bacteria investigated, while for fungi the mechanism of action was against sterol 14α-demethylase (CYP51) targets and dihydrofolate reductase (DHFR). We suggest that BA has antimicrobial activity against several species.

3.
Nat Prod Res ; 37(6): 903-911, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35819986

ABSTRACT

Plants of Hyptidinae subtribe (Lamiaceae - family), as Mesosphaerum sidifolium, are a source of bioactive molecules. In the search for new drug candidates, we perform chemical characterization of diterpenes isolated from the aerial parts of M. sidifolium was carried out with uni- and bidimensional NMR spectral data, and evaluate in silico through the construction of a predictive model followed by in vitro testing Mycobacterium tuberculosis and Mycobacterium smegmatis. Resulted in the isolation of four components: Pomiferin D (1), Salviol (2), Pomiferin E (3) and 2α-hydroxysugiol (4), as well as two phenolic compounds, rosmarinic and caffeic acids. In silico model identified 48 diterpenes likely to have biological activity against M. tuberculosis. The diterpenes isolated were tested in vitro against M. tuberculosis demonstrating MIC = 125 µM for 4 and 1, while 2 and 3 -MIC = 250 µM. These compounds did not show biological activity at these concentrations for M. smegmatis.


Subject(s)
Diterpenes , Lamiaceae , Mycobacterium tuberculosis , Tuberculosis , Microbial Sensitivity Tests , Diterpenes/chemistry , Lamiaceae/chemistry , Antitubercular Agents/chemistry
4.
Curr Neuropharmacol ; 20(5): 857-885, 2022.
Article in English | MEDLINE | ID: mdl-34636299

ABSTRACT

Natural products are compounds isolated from plants that provide a variety of lead structures for the development of new drugs by the pharmaceutical industry. The interest in these substances increases because of their beneficial effects on human health. Alzheimer's disease (AD) affects occur in about 80% of individuals aged 65 years. AD, the most common cause of dementia in elderly people, is characterized by progressive neurodegenerative alterations, as decrease of cholinergic impulse, increased toxic effects caused by reactive oxygen species and the inflammatory process that the amyloid plaque participates. In silico studies is relevant in the process of drug discovery; through technological advances in the areas of structural characterization of molecules, computational science and molecular biology have contributed to the planning of new drugs used against neurodegenerative diseases. Considering the social impairment caused by an increased incidence of disease and that there is no chemotherapy treatment effective against AD; several compounds are studied. In the researches for effective neuroprotectants as potential treatments for Alzheimer's disease, natural products have been extensively studied in various AD models. This study aims to carry out a literature review with articles that address the in silico studies of natural products aimed at potential drugs against Alzheimer's disease (AD) in the period from 2015 to 2021.


Subject(s)
Alzheimer Disease , Biological Products , Aged , Alzheimer Disease/drug therapy , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/therapeutic use , Drug Design , Humans , Plaque, Amyloid
5.
Curr Top Med Chem ; 21(21): 1943-1974, 2021.
Article in English | MEDLINE | ID: mdl-34544342

ABSTRACT

BACKGROUND: Neglected diseases require special attention when looking for new therapeutic alternatives, as these are diseases of extreme complexity and severity that affect populations belonging to lower social classes who lack access to basic rights, such as sanitation. INTRODUCTION: Among the alternatives available for obtaining new drugs is Medicinal Chemistry, which is responsible for the discovery, identification, invention, and preparation of prototypes. In this perspective, the present work aims to make a bibliographic review on the recent studies of Medicinal Chemistry applied to neglected diseases. METHODS: A literature review was carried out by searching the "Web of Sciences" database, including recent articles published on the Neglected Drug Design. RESULTS: In general, it was noticed that the most studied neglected diseases corresponded to Chagas disease and leishmaniasis, with studies on organic synthesis, optimization of structures, and molecular hybrids being the most used strategies. It is also worth mentioning the growing number of computationally developed studies, providing speed and optimization of costs in the procurement process. CONCLUSION: The CADD approach and organic synthesis studies, when applied in the area of Medicinal Chemistry, have proven to be important in the research and discovery of drugs for Neglected Diseases, both in terms of planning the experimental methodology used to obtain it and in the selection of compounds with higher activity potential.


Subject(s)
Chemistry, Pharmaceutical , Drug Design , Neglected Diseases/drug therapy , Chagas Disease/drug therapy , Humans , Leishmaniasis/drug therapy
6.
Molecules ; 26(3)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540716

ABSTRACT

BACKGROUND: The growing demand for agricultural products has led to the misuse/overuse of insecticides; resulting in the use of higher concentrations and the need for ever more toxic products. Ecologically, bioinsecticides are considered better and safer than synthetic insecticides; they must be toxic to the target organism, yet with low or no toxicity to non-target organisms. Many plant extracts have seen their high insecticide potential confirmed under laboratory conditions, and in the search for plant compounds with bioinsecticidal activity, the Lamiaceae family has yielded satisfactory results. OBJECTIVE: The aim of our study was to develop computer-assisted predictions for compounds with known insecticidal activity against Aphis gossypii and Drosophila melanogaster. RESULTS AND CONCLUSION: Structure analysis revealed ent-kaurane, kaurene, and clerodane diterpenes as the most active, showing excellent results. We also found that the interactions formed by these compounds were more stable, or presented similar stability to the commercialized insecticides tested. Overall, we concluded that the compounds bistenuifolin L (1836) and bistenuifolin K (1931), were potentially active against A. gossypii enzymes; and salvisplendin C (1086) and salvixalapadiene (1195), are potentially active against D. melanogaster. We observed and highlight that the diterpenes bistenuifolin L (1836), bistenuifolin K (1931), salvisplendin C (1086), and salvixalapadiene (1195), present a high probability of activity and low toxicity against the species studied.


Subject(s)
Aphids , Computer Simulation , Diterpenes/chemistry , Drosophila melanogaster , Insecticides/chemistry , Lamiaceae/chemistry , Amino Acid Sequence , Animals , Aphids/metabolism , Drosophila melanogaster/metabolism , Humans , Insect Proteins/chemistry , Insect Proteins/metabolism , Machine Learning , Models, Molecular , Protein Conformation
7.
Oxid Med Cell Longev ; 2020: 3098673, 2020.
Article in English | MEDLINE | ID: mdl-32879651

ABSTRACT

Alzheimer's disease (AD) is characterized by the progressive disturbance in cognition and affects approximately 36 million people, worldwide. However, the drugs used to treat this disease are only moderately effective and do not alter the course of the neurodegenerative process. This is because the pathogenesis of AD is mainly associated with oxidative stress, and current drugs only target two enzymes involved in neurotransmission. Therefore, the present study sought to identify potential multitarget compounds for enzymes that are directly or indirectly involved in the oxidative pathway, with minimal side effects, for AD treatment. A set of 159 lignans were submitted to studies of QSAR and molecular docking. A combined analysis was performed, based on ligand and structure, followed by the prediction of absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. The results showed that the combined analysis was able to select 139 potentially active and multitarget lignans targeting two or more enzymes, among them are c-Jun N-terminal kinase 3 (JNK-3), protein tyrosine phosphatase 1B (PTP1B), nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1), NADPH quinone oxidoreductase 1 (NQO1), phosphodiesterase 5 (PDE5), nuclear factor erythroid 2-related factor 2 (Nrf2), cycloxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS). The authors conclude that compounds (06) austrobailignan 6, (11) anolignan c, (19) 7-epi-virolin, (64) 6-[(2R,3R,4R,5R)-3,4-dimethyl-5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]-4-methoxy-1,3-benzodioxole, (116) ococymosin, and (135) mappiodoinin b have probabilities that confer neuroprotection and antioxidant activity and represent potential alternative AD treatment drugs or prototypes for the development of new drugs with anti-AD properties.


Subject(s)
Alzheimer Disease/drug therapy , Drug Evaluation, Preclinical , Lignans/analysis , Lignans/therapeutic use , User-Computer Interface , Algorithms , Cyclic Nucleotide Phosphodiesterases, Type 5/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Databases, Chemical , Humans , Hydrogen Bonding , Lignans/chemistry , Molecular Docking Simulation , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Quantitative Structure-Activity Relationship , ROC Curve , Thermodynamics
8.
Curr Top Med Chem ; 20(24): 2126-2145, 2020.
Article in English | MEDLINE | ID: mdl-32674732

ABSTRACT

BACKGROUND: The emergence of a new coronavirus (CoV), named 2019-nCoV, as an outbreak originated in the city of Wuhan, China, has resulted in the death of more than 3,400 people this year alone and has caused worldwide an alarming situation, particularly following previous CoV epidemics, including the Severe Acute Respiratory Syndrome (SARS) in 2003 and the Middle East Respiratory Syndrome (MERS) in 2012. Currently, no exists for infections caused by CoVs; however, some natural products may represent potential treatment resources, such as those that contain diterpenes. OBJECTIVE: This study aimed to use computational methods to perform a virtual screening (VS) of candidate diterpenes with the potential to act as CoV inhibitors. METHODS: 1,955 diterpenes, derived from the Nepetoideae subfamily (Lamiaceae), were selected using the SistematX tool (https://sistematx.ufpb.br), which were used to make predictions. From the ChEMBL database, 3 sets of chemical structures were selected for the construction of predictive models. RESULTS: The chemical structures of molecules with known activity against SARS CoV, two of which were tested for activity against specific viral proteins and one of which was tested for activity against the virus itself, were classified according to their pIC50 values [-log IC50 (mol/l)]. CONCLUSION: In the consensus analysis approach, combining both ligand- and structure-based VSs, 19 compounds were selected as potential CoV inhibitors, including isotanshinone IIA (01), tanshinlactone (02), isocryptotanshinone (03), and tanshinketolactone (04), which did not present toxicity within the evaluated parameters.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Diterpenes/chemistry , Diterpenes/pharmacology , Lamiaceae/chemistry , Pneumonia, Viral/drug therapy , Antiviral Agents/pharmacokinetics , COVID-19 , Computational Biology , Diterpenes/pharmacokinetics , High-Throughput Screening Assays , Humans , Ligands , Models, Chemical , Molecular Docking Simulation , Molecular Structure , Pandemics , Predictive Value of Tests , SARS-CoV-2 , Structure-Activity Relationship
9.
Molecules ; 25(10)2020 May 12.
Article in English | MEDLINE | ID: mdl-32408657

ABSTRACT

Leishmaniasis is endemic in at least 98 countries. Due to the high toxicity and resistance associated with the drugs, we chose lignans as an alternative, due to their favorable properties of absorption, distribution, metabolism, excretion, and toxicity (ADMET). To investigate their leishmanicidal potential, the biological activities of a set of 160 lignans were predicted using predictive models that were built using data for Leishmania major and L. (Viannia) braziliensis. A combined analysis, based on ligand and structure, and several other computational approaches were used. The results showed that the combined analysis was able to select 11 lignans with potential activity against L. major and 21 lignans against L. braziliensis, with multitargeting effects and low or no toxicity. Of these compounds, four were isolated from the species Justicia aequilabris (Nees) Lindau. All of the identified compounds were able to inhibit the growth of L. braziliensis promastigotes, with the most active compound, (159) epipinoresinol-4-O-ß-d-glucopyranoside, presenting an IC50 value of 5.39 µM and IC50 value of 36.51 µM for L. major. Our findings indicated the potential of computer-aided drug design and development and demonstrated that lignans represent promising prototype compounds for the development of multitarget drugs against leishmaniasis.


Subject(s)
Antiprotozoal Agents/chemistry , Drug Design , Leishmania braziliensis/growth & development , Leishmania major/growth & development , Lignans , Molecular Docking Simulation , Drug Evaluation, Preclinical , Lignans/chemistry , Lignans/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...