Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 12(7)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34357267

ABSTRACT

The coffee industry loses millions of dollars annually worldwide due to the Coffee Berry Borer (CBB); these losses imply a decrease in quality and production. Traps are used to monitor their flight and for pest control. The main objective of this study was to determine the capture pattern and trap capture percentages of the CBB population over time using column traps (CTs) in two independent field experiments. CTs were composed of four traps installed at four different heights 0.5, 1.5, 2.5, and 3.5 m above ground. Our results demonstrated a significant difference in CBB capture by traps placed at different heights above the ground. The CT capture maintained a pattern throughout this study's lag: the lower the height, the greater the percentage of CBBs captured. The study was conducted in two independent experiments (A and B). In Experiment A and B, the traps placed at 0.5 m caught 67% and 85% of the CBBs captured, respectively. Furthermore, the trap set at 1.5 m above the ground in the multi-level CT showed a higher capture percentage than the single placed trap (ST, also at 1.5 m about ground). The pattern of the capture and proportion of the CBB in the CTs was maintained throughout the study despite the season, changes in temperature, and relative air humidity. We suggest that CTs could be explored as a useful tool for capturing the CBB, considering its monitoring and management.

2.
Insects ; 11(9)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32932932

ABSTRACT

Red palm mites (Raoiella indica Hirst, Acari: Tenuipalpidae) were first observed in the western hemisphere on the islands and countries surrounding the Caribbean Sea, infesting the coconut palm (Cocos nucifera L.). Detection of invasive pests usually relies upon changes in vegetation properties as result of the pest activity. These changes may be visible in time series of satellite data records, such as Landsat satellites, which have been available with a 16-day repeat cycle at a spatial resolution of 30 m since 1982. Typical red palm mite infestations result in the yellowing of the lower leaves of the palm crown; remote sensing model simulations have indicated that this feature may be better detected using the green normalized difference vegetation index (GNDVI). Using the Google Earth Engine programming environment, a time series of Landsat 5 Thematic Mapper, Landsat 7 Enhanced Thematic Mapper Plus and Landsat 8 Operational Land Imager data was generated for plantations in northern and northeast Brazil, El Salvador, and Trinidad-Tobago. Considering the available studied plantations, there were little or no differences of GNDVI before and after the dates when red palm mites were first revealed at each location. A discussion of possible alternative approaches are discussed related to the limitations of the current satellite platforms.

3.
Ecol Evol ; 9(13): 7378-7401, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31346410

ABSTRACT

In 2013, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) was officially declared as present in Brazil and, after two years, the species was detected in the Caribbean and North America. Information on genetic features and accurate distribution of pests is the basis for agricultural protection policies. Furthermore, such knowledge is imperative to develop control strategies, understand the geographical range, and genetic patterns of this species in the Americas. Here, we carried out the widest sampling of H. armigera in the South American continent and Puerto Rico, after we estimated the diversity, demographic parameters, and genetic structure. The Internal Transcribed Spacer 1 (ITS1) nuclear marker was used to investigate the presence of putative hybrids between H. armigera and H. zea, and they were observed at a frequency of 1.5%. An ABC analysis, based in COI gene fragment, suggested Europe as the origin of South America specimens of H. armigeraand following a movement northward through the Caribbean. Three mtDNA genes and three nDNA markers revealed high genetic diversity distributed without the defined population structure of H. armigera in South America. Most of the genetic variation is within populations with a multidirectional expansion of H. armigera among morphoclimatic regions. High genetic diversity, rapid population expansion, and hybridization have implications for pest management since they suggest that adaptive alleles are spread through wide areas in South America that favor rapid local adaptation of H. armigera to new and disturbed environments (e.g., in agricultural areas).

4.
Exp Appl Acarol ; 59(1-2): 165-75, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23203501

ABSTRACT

Multi-directional interactions occur among plant hosts, Brevipalpus mites and the plant viruses they transmit. Such interactions should be considered when evaluating the severity of a disease such as citrus leprosis. The current understanding of Brevipalpus-transmitted viruses relies on the capability of the vector to transmit the disease, the persistence of the virus in the host plant and the ability of the disease to spread. Previously, we discussed the Citrus leprosis virus (CiLV) and its importance and spread over the past decade into new areas of South and Central America, most recently into southern Mexico and Belize. Here, we address key questions to better understand the biology of the mite vector, fitness costs, and the peculiarities of Brevipalpus mite reproduction, virus survival, transmissibility and spread, and the expansion of the host plant range of Brevipalpus species vectoring the disease.


Subject(s)
Arachnid Vectors/virology , Citrus/virology , Mites/virology , Plant Diseases/virology , Animals , Arachnid Vectors/physiology , Citrus/parasitology , Female , Host-Pathogen Interactions , Male , Mites/physiology , Plant Diseases/economics , Plant Viruses/physiology
5.
Exp Appl Acarol ; 57(3-4): 373-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22476445

ABSTRACT

Molecular detection of predation by identifying prey markers in the digestive tract of predators has developed into a powerful tool to assess predator-prey systems in which diet identification is too time consuming or impossible. Here we explore its utility for detecting predation of the pest mite Raoiella indica Hirst by the predatory mite Amblyseius largoensis Muma, taking advantage of the color the predator acquires after eating this mite to cross-reference our results. For this, a ~410 bp segment of the cytochrome c oxidase subunit I (COI) mitochondrial gene marker specific for the subfamily Tetranychoidea was used. Amblyseius largoensis that had recently eaten were collected from greenhouse colonies containing both mites, and isolated from any other food source. Predator mites were taken for fingerprinting at 24, 48, 72 and 96 h of starving after collection, and the same process was repeated a second time, offering pollen as an alternative food source to see whether detection changed. Lastly, a sampling trial was conducted in the greenhouse, in which mites were collected regardless of their color and frozen immediately for fingerprinting. Raoiella indica DNA was detected for 48 h on starving predators, and for 96 h on those who had eaten pollen. The segment was detected in 26 % of the samples collected on the trial. This technique needs refinement specific for this system, but the results obtained here confirm that it could turn into a very useful tool for assessing aspects of this predator-prey system.


Subject(s)
DNA Fingerprinting , Mites/genetics , Predatory Behavior , Animals
6.
Exp Appl Acarol ; 57(3-4): 317-29, 2012 Aug.
Article in English | MEDLINE | ID: mdl-21983877

ABSTRACT

The red palm mite (RPM), Raoiella indica Hirst, is a predominant pest of coconuts, date palms and other palm species, as well as a major pest of bananas (Musa spp.) in different parts of the world. Recently, RPM dispersed throughout the Caribbean islands and has reached both the North and South American continents. The RPM introductions have caused severe damage to palm species, and bananas and plantains in the Caribbean region. The work presented herein is the result of several acaricide trials conducted in Puerto Rico and Florida on palms and bananas in order to provide chemical control alternatives to minimize the impact of this pest. Spiromesifen, dicofol and acequinocyl were effective in reducing the population of R. indica in coconut in Puerto Rico. Spray treatments with etoxanole, abamectin, pyridaben, milbemectin and sulfur showed mite control in Florida. In addition, the acaricides acequinocyl and spiromesifen were able to reduce the population of R. indica in banana trials.


Subject(s)
Acaricides , Mites , Tick Control , Animals , Cocos/parasitology , Musa/parasitology
7.
Exp Appl Acarol ; 57(3-4): 309-16, 2012 Aug.
Article in English | MEDLINE | ID: mdl-21915683

ABSTRACT

Although coconut (Cocos nucifera L.) is the predominant host for Raoiella indica Hirst (Acari: Tenuipalpidae), false spider mite infestations do occur on bananas and plantains (Musa spp. Colla). Since its introduction, the banana and plantain industries have been negatively impacted to different degrees by R. indica infestation throughout the Caribbean. Genetic resistance in the host and the proximity of natural sources of mite infestation has been suggested as two of the main factors affecting R. indica densities in Musa spp. plantations. Greenhouse experiments were established to try to determine what effect coconut palm proximities and planting densities had on R. indica populations infesting Musa spp. plants. Trials were carried out using potted Musa spp. and coconut palms plants at two different ratios. In addition, fourteen Musa spp. hybrid accessions were evaluated for their susceptibility/resistance to colonization by R. indica populations. Differences were observed for mite population buildup for both the density and germplasm accession evaluations. These results have potential implications on how this important pest can be managed on essential agricultural commodities such as bananas and plantains.


Subject(s)
Mites/physiology , Musa/parasitology , Animals , Cocos/parasitology , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Musa/immunology , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...