Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Appl Opt ; 63(5): 1247-1257, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38437304

ABSTRACT

An injection-seeded, burst-mode optical parametric oscillator (OPO) operating at a repetition rate of 100 kHz is used to demonstrate the multiline molecular tagging velocimetry of an underexpanded jet using nitric oxide fluorescence. The very narrow linewidth of the OPO system, along with the relatively high pulse energies of the burst-mode system, enables efficient single-photon excitation of nitric oxide along multiple laser beam lines at a high repetition rate. Simultaneous one-dimensional velocity profile measurements were obtained of an underexpanded jet system at six different locations using a reference initial image and single-shot delayed images. A methodology for calculating the uncertainty of single-shot velocity is also described. Mean and root-mean-square velocity profiles are obtained at multiple locations simultaneously over a sampling time of 1 ms. The high-repetition-rate velocity measurements also appear to capture the onset of velocity oscillations and has the potential to reveal velocity frequency content occurring in the tens of kHz. The demonstrated velocimetry technique could be paired with other emerging burst-mode laser capabilities for a quantitative multiparameter gas property or multicomponent gas velocity measurements for supersonic and hypersonic flows, especially within ground test facilities that are limited to very short run durations.

2.
Opt Lett ; 49(5): 1297-1300, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426997

ABSTRACT

The successful demonstration of long-lived nitric oxide (NO) fluorescence for molecular tagging velocimetry (MTV) measurements is described in this Letter. Using 1 + 1 resonance-enhanced multiphoton ionization (REMPI) of NO at a wavelength near 226 nm, targeting the overlapping Q1(7) and Q21(7) lines of the A-X (0, 0) electronic system, the lifetime of the NO MTV signal was observed to be approximately 8.6 µs within a 100-Torr cell containing 2% NO in nitrogen. This is in stark contrast to the commonly reported single photon NO fluorescence, which has a much shorter calculated lifetime of approximately 43 ns at this pressure and NO volume fraction. While the shorter lifetime fluorescence can be useful for molecular tagging velocimetry with single laser excitation within very high-speed flows at some thermodynamic conditions, the longer lived fluorescence shows the potential for an order of magnitude more accurate and precise velocimetry, particularly within lower speed regions of hypersonic flow fields such as wakes and boundary layers. The physical mechanism responsible for the generation of this long-lived signal is detailed. Furthermore, the effectiveness of this technique is showcased in a high-speed jet flow, where it is employed for precise flow velocity measurements.

3.
Exp Hematol ; 134: 104177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38336135

ABSTRACT

Emerging evidence implicates the epithelial-mesenchymal transition transcription factor Zeb1 as a critical regulator of hematopoietic stem cell (HSC) differentiation. Whether Zeb1 regulates long-term maintenance of HSC function remains an open question. Using an inducible Mx-1-Cre mouse model that deletes conditional Zeb1 alleles in the adult hematopoietic system, we found that mice engineered to be deficient in Zeb1 for 32 weeks displayed expanded immunophenotypically defined adult HSCs and multipotent progenitors associated with increased abundance of lineage-biased/balanced HSC subsets and augmented cell survival characteristics. During hematopoietic differentiation, persistent Zeb1 loss increased B cells in the bone marrow and spleen and decreased monocyte generation in the peripheral blood. In competitive transplantation experiments, we found that HSCs from adult mice with long-term Zeb1 deletion displayed a cell autonomous defect in multilineage differentiation capacity. Long-term Zeb1 loss perturbed extramedullary hematopoiesis characterized by increased splenic weight and a paradoxical reduction in splenic cellularity that was accompanied by HSC exhaustion, lineage-specific defects, and an accumulation of aberrant, preleukemic like c-kit+CD16/32+ progenitors. Loss of Zeb1 for up to 42 weeks can lead to progressive splenomegaly and an accumulation of Gr-1+Mac-1+ cells, further supporting the notion that long-term expression of Zeb1 suppresses preleukemic activity. Thus, sustained Zeb1 deletion disrupts HSC functionality in vivo and impairs regulation of extramedullary hematopoiesis with potential implications for tumor suppressor functions of Zeb1 in myeloid neoplasms.


Subject(s)
Hematopoiesis, Extramedullary , Hematopoietic Stem Cells , Zinc Finger E-box-Binding Homeobox 1 , Animals , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Mice , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/pathology , Hematopoiesis, Extramedullary/genetics , Cell Differentiation , Mice, Knockout , Spleen/metabolism , Spleen/pathology , Spleen/cytology , Adult Stem Cells/metabolism , Cell Lineage
4.
Biomolecules ; 13(9)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37759786

ABSTRACT

Zeb1, a zinc finger E-box binding homeobox epithelial-mesenchymal (EMT) transcription factor, acts as a critical regulator of hematopoietic stem cell (HSC) self-renewal and multi-lineage differentiation. Whether Zeb1 directly regulates the function of multi-potent progenitors primed for hematopoietic lineage commitment remains ill defined. By using an inducible Mx-1 Cre conditional mouse model where Zeb1 was genetically engineered to be deficient in the adult hematopoietic system (hereafter Zeb1-/-), we found that the absolute cell number of immunophenotypically defined lympho-myeloid primed progenitors (LMPPs) from Zeb1-/- mice was reduced. Myeloid- and lymphoid-biased HSCs in Zeb1-/- mice were unchanged, implying that defective LMPP generation from Zeb1-/- mice was not directly caused by an imbalance of lineage-biased HSCs. Functional analysis of LMPP from Zeb1-/- mice, as judged by competitive transplantation, revealed an overall reduction in engraftment to hematopoietic organs over 4 weeks, which correlated with minimal T-cell engraftment, reduced B-cell and monocyte/macrophage engraftment, and unperturbed granulocyte engraftment. Thus, Zeb1 regulates LMPP differentiation potential to select lympho-myeloid lineages in the context of transplantation.

5.
Mol Nutr Food Res ; 67(14): e2200716, 2023 07.
Article in English | MEDLINE | ID: mdl-37150886

ABSTRACT

SCOPE: A prospective study of 34492 participants shows an inverse association between (+)-catechin intake and coronary heart disease. The effects of (+)-catechin on atherosclerosis and associated risk factors are poorly understood and are investigated. METHODS AND RESULTS: (+)-Catechin attenuates reactive oxygen species production in human macrophages, endothelial cells and vascular smooth muscle cells, chemokine-driven monocytic migration, and proliferation of human macrophages and their expression of several pro-atherogenic genes. (+)-Catechin also improves oxidized LDL-mediated mitochondrial membrane depolarization in endothelial cells and attenuates growth factor-induced smooth muscle cell migration. In C57BL/6J mice fed high fat diet (HFD) for 3 weeks, (+)-catechin attenuates plasma levels of triacylglycerol and interleukin (IL)-1ß and IL-2, produces anti-atherogenic changes in liver gene expression, and reduces levels of white blood cells, myeloid-derived suppressor cells, Lin- Sca+ c-Kit+ cells, and common lymphoid progenitor cells within the bone marrow. In LDL receptor deficient mice fed HFD for 12 weeks, (+)-catechin attenuates atherosclerotic plaque burden and inflammation with reduced macrophage content and increased markers of plaque stability; smooth muscle cell and collagen content. CONCLUSION: This study provides novel, detailed insights into the cardio-protective actions of (+)-catechin together with underlying molecular mechanisms and supports further assessments of its beneficial effects in human trials.


Subject(s)
Atherosclerosis , Catechin , Plaque, Atherosclerotic , Humans , Mice , Animals , Plaque, Atherosclerotic/metabolism , Catechin/pharmacology , Catechin/metabolism , Endothelial Cells/metabolism , Mice, Inbred C57BL , Prospective Studies , Mice, Knockout , Atherosclerosis/metabolism , Inflammation/metabolism , Receptors, LDL/metabolism , Risk Factors
6.
Leukemia ; 37(2): 276-287, 2023 02.
Article in English | MEDLINE | ID: mdl-36572750

ABSTRACT

Nuclear factor I-C (NFIC) belongs to a family of NFI transcription factors that binds to DNA through CAATT-boxes and are involved in cellular differentiation and stem cell maintenance. Here we show NFIC protein is significantly overexpressed in 69% of acute myeloid leukemia patients. Examination of the functional consequences of NFIC overexpression in HSPCs showed that this protein promoted monocytic differentiation. Single-cell RNA sequencing analysis further demonstrated that NFIC overexpressing monocytes had increased expression of growth and survival genes. In contrast, depletion of NFIC through shRNA decreased cell growth, increased cell cycle arrest and apoptosis in AML cell lines and AML patient blasts. Further, in AML cell lines (THP-1), bulk RNA sequencing of NFIC knockdown led to downregulation of genes involved in cell survival and oncogenic signaling pathways including mixed lineage leukemia-1 (MLL-1). Lastly, we show that NFIC knockdown in an ex vivo mouse MLL::AF9 pre-leukemic stem cell model, decreased their growth and colony formation and increased expression of myeloid differentiation markers Gr1 and Mac1. Collectively, our results suggest that NFIC is an important transcription factor in myeloid differentiation as well as AML cell survival and is a potential therapeutic target in AML.


Subject(s)
Leukemia, Myeloid, Acute , NFI Transcription Factors , Animals , Mice , Cell Differentiation/physiology , Cell Survival/genetics , Hematopoiesis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , NFI Transcription Factors/metabolism
7.
Methods Mol Biol ; 2419: 73-88, 2022.
Article in English | MEDLINE | ID: mdl-35237959

ABSTRACT

Outgrowth of a mutated hematopoietic stem/progenitor clone and its descendants, also known as clonal hematopoiesis, has long been considered as either a potential forerunner to hematologic malignancy or as a clinically silent phase in leukemia that antedates symptomatic disease. That definition of clonal hematopoiesis has now been expanded to encompass patients who harbor specific genetic/epigenetic mutations that lead to clonal hematopoiesis of indeterminate potential (CHIP) and, with it, a relatively heightened risk for both myeloid malignancy and atherosclerosis during aging. In this review, we provide contemporary insights into the cellular and molecular basis for CHIP and explore the relationship of CHIP to myeloid malignancy and atherosclerosis. We also discuss emerging strategies to explore CHIP biology and clinical targeting of CHIP related malignancy and cardiovascular disease.


Subject(s)
Atherosclerosis , Leukemia , Neoplasms , Atherosclerosis/genetics , Atherosclerosis/pathology , Clonal Hematopoiesis/genetics , Hematopoiesis/genetics , Hematopoietic Stem Cells/pathology , Humans , Leukemia/pathology , Mutation , Neoplasms/genetics
8.
Methods Mol Biol ; 2419: 583-595, 2022.
Article in English | MEDLINE | ID: mdl-35237990

ABSTRACT

Advancing age causes physiologic decline in tissue function. In the hematopoietic system this manifests as a progressive reduction in blood or immune cell function and clonal hematopoiesis, where a mutated hematopoietic stem cell can dominate blood cell production and confer an increased propensity for myeloid malignancy. In the aging cardiovascular system, atherosclerosis causes an inflammatory cell- driven accumulation of lipid-derived plaques in major arteries which constrains blood flow and can lead to myocardial infarction and stroke. Clonal hematopoiesis in the elderly has recently been associated with a substantially increased risk of atherosclerosis-related cardiovascular disease. However, the direct association between deregulated hematopoiesis in clonal hematopoiesis and atherosclerosis is poorly defined. Herein, we describe a flow cytometry method to prospectively analyze the crucial hematopoietic stem/progenitor, inflammatory and lymphoid cell participants in atherosclerosis. This analysis can be applied to decipher the complex relationship between hematopoietic cell types involved in clonal hematopoiesis and atherosclerosis in mouse models.


Subject(s)
Atherosclerosis , Hematopoietic Stem Cells , Animals , Atherosclerosis/pathology , Blood Cells/metabolism , Flow Cytometry , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Mice
9.
Appl Opt ; 61(1): 28-34, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35200798

ABSTRACT

Gas density distributions for an underexpanded jet at several different pressure ratios were measured at ultrahigh speeds in this work using digital holographic interferometry (DHI). DHI measurements have generally been performed on the order of several Hz in the literature, although some recent groups report measurements at 10 and 100 kHz. We demonstrate 2D imaging of gas density distributions at imaging rates up to 5 MHz, which is an increase by a factor of 50 compared to the previous DHI literature. A narrow-linewidth, continuous-wave laser was used in a Mach-Zehnder configuration, and the holograms were recorded using one of two different CMOS cameras. The interferograms were analyzed using the Fourier method, and a phase unwrapping was performed. Axisymmetric flow was assumed for the region near the nozzle exit, and an Abel inversion was performed to generate a planar-slice gas density distribution from the line-of-sight unwrapped phase. The challenges and opportunities associated with performing DHI measurements at ultrahigh speeds are discussed.

10.
Stem Cell Reports ; 16(11): 2784-2797, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34715054

ABSTRACT

Hematopoietic stem cells (HSCs) reside at the apex of the hematopoietic differentiation hierarchy and sustain multilineage hematopoiesis. Here, we show that the transcriptional regulator CITED2 is essential for life-long HSC maintenance. While hematopoietic-specific Cited2 deletion has a minor impact on steady-state hematopoiesis, Cited2-deficient HSCs are severely depleted in young mice and fail to expand upon aging. Moreover, although they home normally to the bone marrow, they fail to reconstitute hematopoiesis upon transplantation. Mechanistically, CITED2 is required for expression of key HSC regulators, including GATA2, MCL-1, and PTEN. Hematopoietic-specific expression of anti-apoptotic MCL-1 partially rescues the Cited2-deficient HSC pool and restores their reconstitution potential. To interrogate the Cited2→Pten pathway in HSCs, we generated Cited2;Pten compound heterozygous mice, which had a decreased number of HSCs that failed to reconstitute the HSC compartment. In addition, CITED2 represses multiple pathways whose elevated activity causes HSC exhaustion. Thus, CITED2 promotes pathways necessary for HSC maintenance and suppresses those detrimental to HSC integrity.


Subject(s)
Gene Expression Regulation , Hematopoiesis/genetics , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/metabolism , Repressor Proteins/genetics , Trans-Activators/genetics , Animals , Apoptosis/genetics , Cell Proliferation/genetics , Gene Regulatory Networks/genetics , Mice, Inbred C57BL , Mice, Knockout , RNA-Seq/methods , Repressor Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Time Factors , Trans-Activators/metabolism
11.
Blood Adv ; 5(20): 4285-4290, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34496012

ABSTRACT

During aging, hematopoietic stem cell (HSC) function wanes with important biological and clinical implications for benign and malignant hematology, and other comorbidities, such as cardiovascular disease. However, the molecular mechanisms regulating HSC aging remain incompletely defined. GATA2 haploinsufficiency driven clinical syndromes initially result in primary immunodeficiencies and routinely evolve into hematologic malignancies on acquisition of further epigenetic mutations in both young and older patients. Using a conditional mouse model of Gata2 haploinsufficiency, we discover that during aging Gata2 promotes HSC proliferation, monocytosis, and loss of the common lymphoid progenitor. Aging of Gata2 haploinsufficient mice also offsets enhanced HSC apoptosis and decreased granulocyte-macrophage progenitor number normally observed in young Gata2 haploinsufficient mice. Transplantation of elderly Gata2 haploinsufficient HSCs impairs HSC function with evidence of myeloid bias. Our data demonstrate that Gata2 regulates HSC aging and suggest the mechanisms by which Gata2 mediated HSC aging has an impact on the evolution of malignancies in GATA2 haploinsufficiency syndromes.


Subject(s)
GATA2 Deficiency , Aged , Aging/genetics , Animals , Cell Proliferation , GATA2 Transcription Factor/genetics , Hematopoiesis , Hematopoietic Stem Cells , Humans , Mice
12.
Mol Nutr Food Res ; 65(17): e2100214, 2021 09.
Article in English | MEDLINE | ID: mdl-34216185

ABSTRACT

SCOPE: Previous studies show that Lab4 probiotic consortium plus Lactobacillus plantarum CUL66 (Lab4P) reduces diet-induced weight gain and plasma cholesterol levels in C57BL/6J mice fed a high fat diet (HFD). The effect of Lab4P on atherosclerosis is not known and is therefore investigated. METHODS AND RESULTS: Atherosclerosis-associated parameters are analyzed in LDL receptor deficient mice fed HFD for 12 weeks alone or supplemented with Lab4P. Lab4P increases plasma HDL and triglyceride levels and decreases LDL/VLDL levels. Lab4P also reduces plaque burden and content of lipids and macrophages, indicative of dampened inflammation, and increases smooth muscle cell content, a marker of plaque stabilization. Atherosclerosis arrays show that Lab4P alters the liver expression of 19 key disease-associated genes. Lab4P also decreases the frequency of macrophages and T-cells in the bone marrow. In vitro assays using conditioned media from probiotic bacteria demonstrates attenuation of several atherosclerosis-associated processes in vitro such as chemokine-driven monocytic migration, proliferation of monocytes and macrophages, foam cell formation and associated changes in expression of key genes, and proliferation and migration of vascular smooth muscle cells. CONCLUSION: This study provides new insights into the anti-atherogenic actions of Lab4P together with the underlying mechanisms and supports further assessments in human trials.


Subject(s)
Atherosclerosis/therapy , Liver/physiology , Plaque, Atherosclerotic/therapy , Probiotics/pharmacology , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Bone Marrow Cells , Cholesterol/blood , Culture Media, Conditioned/pharmacology , Diet, High-Fat/adverse effects , Gene Expression Regulation , Lactobacillus plantarum , Lipids/blood , Male , Mice, Mutant Strains , Organ Size , Plaque, Atherosclerotic/pathology , Receptors, LDL/genetics , Spleen/growth & development
13.
Food Funct ; 12(8): 3657-3671, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33900312

ABSTRACT

Atherosclerosis, an inflammatory disorder of the vasculature and the underlying cause of cardiovascular disease, is responsible for one in three global deaths. Consumption of active food ingredients such as omega-3 polyunsaturated fatty acids, flavanols and phytosterols has many beneficial effects on cardiovascular disease. However, their combined actions on the risk factors for atherosclerosis remains poorly understood. We have previously shown that a formulation containing each of these active components at physiologically relevant doses modulated several monocyte/macrophage processes associated with atherosclerosis in vitro, including inhibition of cytokine-induced pro-inflammatory gene expression, chemokine-driven monocyte migration, expression of M1 phenotype markers, and promotion of cholesterol efflux. The objectives of the present study were to investigate whether the protective actions of the formulation extended in vivo and to delineate the potential underlying mechanisms. The formulation produced several favourable changes, including higher plasma levels of HDL and reduced levels of macrophages and myeloid-derived suppressor cells in the bone marrow. The mRNA expression of liver-X-receptor-α, peroxisome proliferator-activated receptor-γ and superoxide dismutase-1 was induced in the liver and that of interferon-γ and the chemokine (C-X-C motif) ligand 1 decreased, thereby suggesting the potential mechanisms for many beneficial effects. Other changes were also observed such as increased plasma levels of triglycerides and lipid peroxidation that may reflect potential activation of brown fat. This study provides new insights into the protective actions and the potential underlying mechanisms of the formulation in vivo, particularly in relation to risk factors together with changes in systemic inflammation and hepatic lipid alterations associated with atherosclerosis and metabolic syndrome, and supports further assessments in human trials.


Subject(s)
Cardiotonic Agents/pharmacology , Coronary Artery Disease/prevention & control , Animals , Cardiotonic Agents/administration & dosage , Diet, High-Fat , Disease Models, Animal , Fatty Acids, Omega-3/administration & dosage , Flavanones/administration & dosage , Functional Food , Gene Expression , Male , Mice , Mice, Inbred C57BL , Phytosterols/administration & dosage , Risk Factors
14.
Blood Adv ; 5(3): 889-899, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33560400

ABSTRACT

Lifelong multilineage hematopoiesis critically depends on rare hematopoietic stem cells (HSCs) that reside in the hypoxic bone marrow microenvironment. Although the role of the canonical oxygen sensor hypoxia-inducible factor prolyl hydroxylase has been investigated extensively in hematopoiesis, the functional significance of other members of the 2-oxoglutarate (2-OG)-dependent protein hydroxylase family of enzymes remains poorly defined in HSC biology and multilineage hematopoiesis. Here, by using hematopoietic-specific conditional gene deletion, we reveal that the 2-OG-dependent protein hydroxylase JMJD6 is essential for short- and long-term maintenance of the HSC pool and multilineage hematopoiesis. Additionally, upon hematopoietic injury, Jmjd6-deficient HSCs display a striking failure to expand and regenerate the hematopoietic system. Moreover, HSCs lacking Jmjd6 lose multilineage reconstitution potential and self-renewal capacity upon serial transplantation. At the molecular level, we found that JMJD6 functions to repress multiple processes whose downregulation is essential for HSC integrity, including mitochondrial oxidative phosphorylation (OXPHOS), protein synthesis, p53 stabilization, cell cycle checkpoint progression, and mTORC1 signaling. Indeed, Jmjd6-deficient primitive hematopoietic cells display elevated basal and maximal mitochondrial respiration rates and increased reactive oxygen species (ROS), prerequisites for HSC failure. Notably, an antioxidant, N-acetyl-l-cysteine, rescued HSC and lymphoid progenitor cell depletion, indicating a causal impact of OXPHOS-mediated ROS generation upon Jmjd6 deletion. Thus, JMJD6 promotes HSC maintenance and multilineage differentiation potential by suppressing fundamental pathways whose activation is detrimental for HSC function.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells , Bone Marrow , Bone Marrow Transplantation , Cell Differentiation
15.
J Clin Invest ; 131(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33108352

ABSTRACT

Zeb1, a zinc finger E-box binding homeobox epithelial-mesenchymal transition (EMT) transcription factor, confers properties of "stemness," such as self-renewal, in cancer. Yet little is known about the function of Zeb1 in adult stem cells. Here, we used the hematopoietic system as a well-established paradigm of stem cell biology to evaluate Zeb1-mediated regulation of adult stem cells. We employed a conditional genetic approach using the Mx1-Cre system to specifically knock out (KO) Zeb1 in adult hematopoietic stem cells (HSCs) and their downstream progeny. Acute genetic deletion of Zeb1 led to rapid-onset thymic atrophy and apoptosis-driven loss of thymocytes and T cells. A profound cell-autonomous self-renewal defect and multilineage differentiation block were observed in Zeb1-KO HSCs. Loss of Zeb1 in HSCs activated transcriptional programs of deregulated HSC maintenance and multilineage differentiation genes and of cell polarity consisting of cytoskeleton-, lipid metabolism/lipid membrane-, and cell adhesion-related genes. Notably, epithelial cell adhesion molecule (EpCAM) expression was prodigiously upregulated in Zeb1-KO HSCs, which correlated with enhanced cell survival, diminished mitochondrial metabolism, ribosome biogenesis, and differentiation capacity and an activated transcriptomic signature associated with acute myeloid leukemia (AML) signaling. ZEB1 expression was downregulated in AML patients, and Zeb1 KO in the malignant counterparts of HSCs - leukemic stem cells (LSCs) - accelerated MLL-AF9- and Meis1a/Hoxa9-driven AML progression, implicating Zeb1 as a tumor suppressor in AML LSCs. Thus, Zeb1 acts as a transcriptional regulator in hematopoiesis, critically coordinating HSC self-renewal, apoptotic, and multilineage differentiation fates required to suppress leukemic potential in AML.


Subject(s)
Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/metabolism , Tumor Suppressor Proteins/metabolism , Zinc Finger E-box-Binding Homeobox 1/metabolism , Animals , Gene Deletion , Hematopoietic Stem Cells/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Knockout , Neoplastic Stem Cells/pathology , Tumor Suppressor Proteins/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics
16.
Sci Rep ; 9(1): 12212, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31434974

ABSTRACT

GATA2, a zinc finger transcription factor predominantly expressed in hematopoietic cells, acts as an essential regulator of hematopoietic stem cell generation, survival and functionality. Loss and gain of GATA2 expression has been implicated in myelodysplastic syndrome and acute myeloid leukemia (AML) yet the precise biological impact of GATA2 expression on human AML cell fate decisions remains ambiguous. Herein, we performed large-scale bioinformatics that demonstrated relatively frequent GATA2 overexpression in AML patients as well as select human AML (or AML-like) cell lines. By using shRNAi to target GATA2 in these AML cell lines, and an AML cell line expressing normal levels of GATA2, we found that inhibition of GATA2 caused attenuated cell proliferation and enhanced apoptosis exclusively in AML cell lines that overexpress GATA2. We proceeded to pharmacologically inhibit GATA2 in concert with AML chemotherapeutics and found this augmented cell killing in AML cell lines that overexpress GATA2, but not in an AML cell line expressing normal levels of GATA2. These data indicate that inhibition of GATA2 enhances chemotherapy-mediated apoptosis in human AML cells overexpressing GATA2. Thus, we define novel insights into the oncogenic role of GATA2 in human AML cells and suggest the potential utilization of transient GATA2 therapeutic targeting in AML.


Subject(s)
Apoptosis , Cell Proliferation , GATA2 Transcription Factor/metabolism , Leukemia, Myeloid, Acute/metabolism , Neoplasm Proteins/metabolism , Antineoplastic Agents/therapeutic use , GATA2 Transcription Factor/genetics , HL-60 Cells , Humans , K562 Cells , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Neoplasm Proteins/genetics , THP-1 Cells
17.
Stem Cell Reports ; 13(2): 291-306, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31378673

ABSTRACT

Subversion of transcription factor (TF) activity in hematopoietic stem/progenitor cells (HSPCs) leads to the development of therapy-resistant leukemic stem cells (LSCs) that drive fulminant acute myeloid leukemia (AML). Using a conditional mouse model where zinc-finger TF Gata2 was deleted specifically in hematopoietic cells, we show that knockout of Gata2 leads to rapid and complete cell-autonomous loss of adult hematopoietic stem cells. By using short hairpin RNAi to target GATA2, we also identify a requirement for GATA2 in human HSPCs. In Meis1a/Hoxa9-driven AML, deletion of Gata2 impedes maintenance and self-renewal of LSCs. Ablation of Gata2 enforces an LSC-specific program of enhanced apoptosis, exemplified by attenuation of anti-apoptotic factor BCL2, and re-instigation of myeloid differentiation--which is characteristically blocked in AML. Thus, GATA2 acts as a critical regulator of normal and leukemic stem cells and mediates transcriptional networks that may be exploited therapeutically to target key facets of LSC behavior in AML.


Subject(s)
GATA2 Transcription Factor/genetics , Hematopoietic Stem Cells/metabolism , Animals , Apoptosis , Cell Self Renewal , Disease Models, Animal , GATA2 Transcription Factor/antagonists & inhibitors , GATA2 Transcription Factor/metabolism , Hematopoiesis , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Humans , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA Interference , RNA, Small Interfering/metabolism
18.
Rev Sci Instrum ; 90(7): 075107, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31370480

ABSTRACT

The development and performance of a perforated plate burner (PPB) operating using premixed natural gas and air at engine-relevant inlet temperatures and combustor pressures with thermal powers up to 1 MW is discussed. A significant benefit of using burners with simplified flow fields, such as the PPB, for experimental studies in the laboratory is the potential for decoupling the complex fluid dynamics in typical combustors from the chemical kinetics. The primary motivation for developing this burner was to use it as a source of vitiated flow with negligible swirl for reacting jet in vitiated crossflow experiments. The design methodology for the PPB is described, including plate geometry selection and flashback mitigation features. The stable operation of the PPB within a high-pressure test rig was validated: successful ignition, effective use of red-lines for flashback mitigation, and long duration steady-state operation in both piloted and nonpiloted modes were all observed. Exhaust gas emissions measured using a Fourier-transform infrared (FTIR) spectrometer showed very good performance of the PPB in terms of the combustion efficiency (based on measured CO and UHC), and a stability diagram of the PPB was developed as a function of the equivalence ratio and the PPB hole velocity. FTIR measurements also showed very low levels of NOX in nonpiloted operation that were generally within 3 ppm (reported dry and referenced to 15% O2). The capability for steady-state operation, high combustion efficiency, and low levels of NOX makes this PPB an excellent burner candidate for combustion experiments in the laboratory.

19.
Methods Mol Biol ; 1899: 15-23, 2019.
Article in English | MEDLINE | ID: mdl-30649762

ABSTRACT

Bone marrow resident hematopoietic stem cells (HSCs) are responsible for the lifetime generation of the wide profusion of blood and immune cell types found in the body. In addition, therapeutically, in the context of bone marrow transplantation, HSCs have been successfully deployed to restore normal blood-forming capacity in patients being treated with high-dose chemotherapy for hematologic malignancies. The known ability of bone marrow transplantation to either restore or reset the immune system and to engender immune tolerance has suggested that HSCs may be applied therapeutically for a wider range of clinical conditions, including immunological/autoimmune disorders and allogeneic organ transplantation. Herein, we describe a flow-cytometry-based method to isolate mouse HSCs for continued experimental investigation into such therapeutic uses.


Subject(s)
Cell Separation/methods , Flow Cytometry/methods , Hematopoietic Stem Cells/cytology , Animals , Bone Marrow Transplantation , Hematopoietic Stem Cell Transplantation , Humans , Mice
20.
Immunity ; 48(2): 187-190, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29466747

ABSTRACT

Immune surveillance is an established regulatory mechanism that spares tissues from malignant transformation. Agudo et al. (2018) find that the chief cell type to generate tissues in the body-somatic stem cells-is subject to immune surveillance only during proliferation.


Subject(s)
Cell Cycle , Stem Cells , Cell Transformation, Neoplastic , Humans , Immunologic Surveillance
SELECTION OF CITATIONS
SEARCH DETAIL
...