Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Nat Immunol ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806707

ABSTRACT

The circadian clock is a critical regulator of immunity, and this circadian control of immune modulation has an essential function in host defense and tumor immunosurveillance. Here we use a single-cell RNA sequencing approach and a genetic model of colorectal cancer to identify clock-dependent changes to the immune landscape that control the abundance of immunosuppressive cells and consequent suppression of cytotoxic CD8+ T cells. Of these immunosuppressive cell types, PD-L1-expressing myeloid-derived suppressor cells (MDSCs) peak in abundance in a rhythmic manner. Disruption of the epithelial cell clock regulates the secretion of cytokines that promote heightened inflammation, recruitment of neutrophils and the subsequent development of MDSCs. We also show that time-of-day anti-PD-L1 delivery is most effective when synchronized with the abundance of immunosuppressive MDSCs. Collectively, these data indicate that circadian gating of tumor immunosuppression informs the timing and efficacy of immune checkpoint inhibitors.

2.
ACS Cent Sci ; 10(4): 793-802, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38680558

ABSTRACT

Antigen processing is critical for therapeutic vaccines to generate epitopes for priming cytotoxic T cell responses against cancer and pathogens, but insufficient processing often limits the quantity of epitopes released. We address this challenge using machine learning to ascribe a proteasomal degradation score to epitope sequences. Epitopes with varying scores were translocated into cells using nontoxic anthrax proteins. Epitopes with a low score show pronounced immunogenicity due to antigen processing, but epitopes with a high score show limited immunogenicity. This work sheds light on the sequence-activity relationships between proteasomal degradation and epitope immunogenicity. We anticipate that future efforts to incorporate proteasomal degradation signals into vaccine designs will lead to enhanced cytotoxic T cell priming by these vaccines in clinical settings.

3.
ACS Omega ; 9(10): 11266-11272, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38497006

ABSTRACT

Organic molecules that undergo supercooling can provide the basis for novel stimuli-responsive materials, but the number of such compounds is limited. Results in this paper show that the stable organic radical 2,2,6,6-tetramethyl-1-piperidine-1-oxyl (TEMPO) can form a stable supercooled liquid (SCL). Upon melting and cooling back to room temperature, the TEMPO SCL can persist for months, even after mild physical agitation. Its high vapor pressure can enable crystal growth at remote locations within the sample container over the course of days. Optical, electron paramagnetic resonance, and birefringence measurements show no evidence of new chemical species or partially ordered phases in the supercooled liquid. TEMPO's free radical character permits absorption of visible light that can drive photothermal melting to form the SCL, while a single nanosecond light pulse can initiate recrystallization of the SCL at some later time. This capability enables all-optical switching between the solid and the SCL phases. The physical origin of TEMPO's remarkable stability as an SCL remains an open question, but these results suggest that organic radicals comprise a new class of molecules that can form SCLs with potentially useful properties.

4.
Chem Commun (Camb) ; 60(31): 4238-4241, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38529790

ABSTRACT

Polymer-protein bioconjugation offers a powerful strategy to alter the physical properties of proteins, and various synthetic polymer compositions and architectures have been investigated for this purpose. Nevertheless, conjugation of molecular bottlebrush polymers (BPs) to proteins remains an unsolved challenge due to the large size of BPs and a general lack of methods to transform the chain ends of BPs into functional groups suitable for bioconjugation. Here, we present a strategy to address this challenge in the context of BPs prepared by "graft-through" ring-opening metathesis polymerization (ROMP), one of the most powerful methods for BP synthesis. Quenching ROMP of PEGylated norbornene macromonomers with an activated enyne terminator facilitates the transformation of the BP Ru alkylidene chain ends into Pd oxidative addition complexes (OACs) for facile bioconjugation. This strategy is shown to be effective for the synthesis of two BP-protein conjugates (albumin and ERG), setting the stage for a new class of BP-protein conjugates for future therapeutic and imaging applications.


Subject(s)
Polymers , Proteins , Polymerization , Albumins
5.
Pacing Clin Electrophysiol ; 47(3): 398-400, 2024 03.
Article in English | MEDLINE | ID: mdl-38341644

ABSTRACT

INTRODUCTION: Complications are more prevalent in pediatric patients receiving pacemaker implants. METHODS: We performed a retrospective review of a retrievable, 38 mm leadless pacemaker implantation in a 23-kg pediatric patient. CASE/DISCUSSION: An active 9-year-old, 23 kg male patient with tetralogy of Fallot with intermittent pacing need presented with a fractured lead and pacing need. He underwent implant of a retrievable leadless pacemaker (Abbott Aveir) via internal jugular vein access, without complication, and with echocardiographic guidance. His threshold was stable at 1.25 V @0.4 ms, with stable impedance and sensing at 5-month follow-up. CONCLUSION: Aveir retrievable leadless pacemakers can be implanted safely in a child with tetralogy of Fallot, as small as 23 kilograms.


Subject(s)
Heart Defects, Congenital , Pacemaker, Artificial , Tetralogy of Fallot , Humans , Male , Child , Tetralogy of Fallot/surgery , Treatment Outcome , Pacemaker, Artificial/adverse effects , Retrospective Studies , Equipment Design , Heart Defects, Congenital/therapy , Cardiac Pacing, Artificial
6.
Nat Cell Biol ; 25(12): 1848-1859, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37957324

ABSTRACT

Breast cancer brain metastasis (BCBM) is a lethal disease with no effective treatments. Prior work has shown that brain cancers and metastases are densely infiltrated with anti-inflammatory, protumourigenic tumour-associated macrophages, but the role of brain-resident microglia remains controversial because they are challenging to discriminate from other tumour-associated macrophages. Using single-cell RNA sequencing, genetic and humanized mouse models, we specifically identify microglia and find that they play a distinct pro-inflammatory and tumour-suppressive role in BCBM. Animals lacking microglia show increased metastasis, decreased survival and reduced natural killer and T cell responses, showing that microglia are critical to promote anti-tumour immunity to suppress BCBM. We find that the pro-inflammatory response is conserved in human microglia, and markers of their response are associated with better prognosis in patients with BCBM. These findings establish an important role for microglia in anti-tumour immunity and highlight them as a potential immunotherapy target for brain metastasis.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Mice , Animals , Humans , Female , Microglia , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Brain Neoplasms/pathology , Brain/pathology , Treatment Outcome
7.
Micromachines (Basel) ; 14(11)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38004954

ABSTRACT

We present a combination of light-sheet excitation and two-dimensional fluorescence intensity ratio (FIR) measurements as a simple and promising technique for three-dimensional temperature mapping. The feasibility of this approach is demonstrated with samples fabricated with sodium yttrium fluoride nanoparticles co-doped with rare-earth ytterbium and erbium ions (NaYF4:Yb3+/Er3+) incorporated into polydimethylsiloxane (PDMS) as a host material. In addition, we also evaluate the technique using lipid-coated NaYF4:Yb3+/Er3+ nanoparticles immersed in agar. The composite materials show upconverted (UC) fluorescence bands when excited by a 980 nm near-infrared laser light-sheet. Using a single CMOS camera and a pair of interferometric optical filters to specifically image the two thermally-coupled bands (at 525 and 550 nm), the two-dimensional FIR and, hence, the temperature map can be readily obtained. The proposed method can take optically sectioned (confocal-like) images with good optical resolution over relatively large samples (up to the millimetric scale) for further 3D temperature reconstruction.

8.
bioRxiv ; 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37662211

ABSTRACT

Antigen processing is critical for producing epitope peptides that are presented by HLA molecules for T cell recognition. Therapeutic vaccines aim to harness these epitopes for priming cytotoxic T cell responses against cancer and pathogens, but insufficient processing often reduces vaccine efficacy through limiting the quantity of epitopes released. Here, we set out to improve antigen processing by harnessing protein degradation signals called degrons from the ubiquitin-proteasome system. We used machine learning to generate a computational model that ascribes a proteasomal degradation score between 0 and 100. Epitope peptides with varying degron activities were synthesized and translocated into cells using nontoxic anthrax proteins: protective antigen (PA) and the N-terminus of lethal factor (LFN). Immunogenicity studies revealed epitope sequences with a low score (<25) show pronounced T-cell activation but epitope sequences with a higher score (>75) provide limited activation. This work sheds light on the sequence-activity relationships between proteasomal degradation and epitope immunogenicity, through conserving the epitope region but varying the flanking sequence. We anticipate that future efforts to incorporate proteasomal degradation signals into vaccine designs will lead to enhanced cytotoxic T cell priming by vaccine therapeutics in clinical settings.

9.
J Am Chem Soc ; 145(24): 12992-12997, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37294668

ABSTRACT

An expansion of the hexanucleotide (GGGGCC) repeat sequence in chromosome 9 open frame 72 (c9orf72) is the most common genetic mutation in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The mutation leads to the production of toxic dipeptide repeat proteins (DPRs) that induce neurodegeneration. However, the fundamental physicochemical properties of DPRs remain largely unknown due to their limited availability. Here, we synthesized the c9orf72 DPRs poly-glycine-arginine (poly-GR), poly-proline-arginine (poly-PR), poly-glycine-proline (poly-GP), poly-proline-alanine (poly-PA), and poly-glycine-alanine (poly-GA) using automated fast-flow peptide synthesis (AFPS) and achieved single-domain chemical synthesis of proteins with up to 200 amino acids. Circular dichroism spectroscopy of the synthetic DPRs revealed that proline-containing poly-PR, poly-GP, and poly-PA could adopt polyproline II-like helical secondary structures. In addition, structural analysis by size-exclusion chromatography indicated that longer poly-GP and poly-PA might aggregate. Furthermore, cell viability assays showed that human neuroblastoma cells cultured with poly-GR and poly-PR with longer repeat lengths resulted in reduced cell viability, while poly-GP and poly-PA did not, thereby reproducing the cytotoxic property of endogenous DPRs. This research demonstrates the potential of AFPS to synthesize low-complexity peptides and proteins necessary for studying their pathogenic mechanisms and constructing disease models.


Subject(s)
Dipeptides , Proteins , Humans , Dipeptides/chemistry , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Open Reading Frames , Proteins/chemistry , Glycine , Alanine , Proline , Arginine/genetics , Chromosomes, Human, Pair 9/metabolism
10.
Nat Genet ; 55(4): 595-606, 2023 04.
Article in English | MEDLINE | ID: mdl-36914836

ABSTRACT

Women with germline BRCA1 mutations (BRCA1+/mut) have increased risk for hereditary breast cancer. Cancer initiation in BRCA1+/mut is associated with premalignant changes in breast epithelium; however, the role of the epithelium-associated stromal niche during BRCA1-driven tumor initiation remains unclear. Here we show that the premalignant stromal niche promotes epithelial proliferation and mutant BRCA1-driven tumorigenesis in trans. Using single-cell RNA sequencing analysis of human preneoplastic BRCA1+/mut and noncarrier breast tissues, we show distinct changes in epithelial homeostasis including increased proliferation and expansion of basal-luminal intermediate progenitor cells. Additionally, BRCA1+/mut stromal cells show increased expression of pro-proliferative paracrine signals. In particular, we identify pre-cancer-associated fibroblasts (pre-CAFs) that produce protumorigenic factors including matrix metalloproteinase 3 (MMP3), which promotes BRCA1-driven tumorigenesis in vivo. Together, our findings demonstrate that precancerous stroma in BRCA1+/mut may elevate breast cancer risk through the promotion of epithelial proliferation and an accumulation of luminal progenitor cells with altered differentiation.


Subject(s)
Breast Neoplasms , Mammary Glands, Human , Female , Humans , Mutation , BRCA1 Protein/genetics , Breast Neoplasms/pathology , Cell Transformation, Neoplastic/metabolism , Mammary Glands, Human/metabolism , Carcinogenesis/pathology , Stromal Cells/pathology
11.
J Am Chem Soc ; 144(26): 11706-11712, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35749644

ABSTRACT

Catalyst transfer polymerization (CTP) is widely applied to the synthesis of well-defined π-conjugated polymers. Unlike other polymerization reactions that can be performed in water (e.g., controlled radical polymerizations and ring-opening polymerizations), CTP has yet to be adapted for the modification of biopolymers. Here, we report the use of protein-palladium oxidative addition complexes (OACs) that enable catalyst transfer polymerization to furnish protein-polyarene conjugates. These polymerizations occur with electron-deficient monomers in aqueous buffers open to air at mild (≤37 °C) temperatures with full conversion of the protein OAC and an average polymer length of nine repeating units. Proteins with polyarene chains terminated with palladium OACs can be readily isolated. Direct evidence of protein-polyarene OAC formation was obtained using mass spectrometry, and all protein-polyarene chain ends were uniformly functionalized via C-S arylation to terminate the polymerization with a small molecule thiol or a cysteine-containing protein.


Subject(s)
Palladium , Proteins , Palladium/chemistry , Polymerization , Polymers/chemistry , Proteins/chemistry , Water/chemistry
13.
Nat Cancer ; 3(4): 486-504, 2022 04.
Article in English | MEDLINE | ID: mdl-35469015

ABSTRACT

Disseminated cancer cells frequently lodge near vasculature in secondary organs. However, our understanding of the cellular crosstalk invoked at perivascular sites is still rudimentary. Here, we identify intercellular machinery governing formation of a pro-metastatic vascular niche during breast cancer colonization in the lung. We show that specific secreted factors, induced in metastasis-associated endothelial cells (ECs), promote metastasis in mice by enhancing stem cell properties and the viability of cancer cells. Perivascular macrophages, activated via tenascin C (TNC) stimulation of Toll-like receptor 4 (TLR4), were shown to be crucial in niche activation by secreting nitric oxide (NO) and tumor necrosis factor (TNF) to induce EC-mediated production of niche components. Notably, this mechanism was independent of vascular endothelial growth factor (VEGF), a key regulator of EC behavior and angiogenesis. However, targeting both macrophage-mediated vascular niche activation and VEGF-regulated angiogenesis resulted in added potency to curb lung metastasis in mice. Together, our findings provide mechanistic insights into the formation of vascular niches in metastasis.


Subject(s)
Lung Neoplasms , Macrophages , Tenascin , Animals , Endothelial Cells/metabolism , Lung/blood supply , Lung/metabolism , Lung Neoplasms/blood supply , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Macrophages/metabolism , Macrophages/pathology , Mice , Neovascularization, Pathologic/pathology , Tenascin/metabolism , Vascular Endothelial Growth Factor A/metabolism
14.
Clin Infect Dis ; 75(1): e536-e544, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35412591

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is dominated by variant viruses; the resulting impact on disease severity remains unclear. Using a retrospective cohort study, we assessed the hospitalization risk following infection with 7 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. METHODS: Our study includes individuals with positive SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) in the Washington Disease Reporting System with available viral genome data, from 1 December 2020 to 14 January 2022. The analysis was restricted to cases with specimens collected through sentinel surveillance. Using a Cox proportional hazards model with mixed effects, we estimated hazard ratios (HR) for hospitalization risk following infection with a variant, adjusting for age, sex, calendar week, and vaccination. RESULTS: In total, 58 848 cases were sequenced through sentinel surveillance, of which 1705 (2.9%) were hospitalized due to COVID-19. Higher hospitalization risk was found for infections with Gamma (HR 3.20, 95% confidence interval [CI] 2.40-4.26), Beta (HR 2.85, 95% CI 1.56-5.23), Delta (HR 2.28 95% CI 1.56-3.34), or Alpha (HR 1.64, 95% CI 1.29-2.07) compared to infections with ancestral lineages; Omicron (HR 0.92, 95% CI .56-1.52) showed no significant difference in risk. Following Alpha, Gamma, or Delta infection, unvaccinated patients show higher hospitalization risk, while vaccinated patients show no significant difference in risk, both compared to unvaccinated, ancestral lineage cases. Hospitalization risk following Omicron infection is lower with vaccination. CONCLUSIONS: Infection with Alpha, Gamma, or Delta results in a higher hospitalization risk, with vaccination attenuating that risk. Our findings support hospital preparedness, vaccination, and genomic surveillance.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Hospitalization , Humans , Retrospective Studies , SARS-CoV-2/genetics , Washington/epidemiology
15.
J Am Chem Soc ; 144(17): 7852-7860, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35438502

ABSTRACT

Carboranes represent a class of compounds with increasing therapeutic potential. However, few general approaches to readily embed carboranes into small molecules, peptides, and proteins are available. We report a strategy based on palladium-mediated C-X (X = C, S, and N) bond formation for the installation of carborane-containing moieties onto small molecules and peptides. We demonstrate the ability of Pd-based reagents with appropriate ligands to overcome the high hydrophobicity of the carborane group and enable chemoselective conjugation of cysteine residues at room temperature in aqueous buffer. Accordingly, carboranes can be efficiently installed on proteins by employing a combination of a bis-sulfonated biarylphosphine-ligated Pd reagent in an aqueous histidine buffer. This method is successfully employed on nanobodies, a fully synthetic affibody, and the antibody therapeutics trastuzumab and cetuximab. The conjugates of the affibody ZHER2 and the trastuzumab antibody retained binding to their target antigens. Conjugated proteins maintain their activity in cell-based functional assays in HER2-positive BT-474 cell lines. This approach enables the rapid incorporation of carborane moieties into small molecules, peptides, and proteins for further exploration in boron neutron capture therapy, which requires the targeted delivery of boron-dense groups.


Subject(s)
Boranes , Palladium , Boranes/chemistry , Palladium/chemistry , Peptides , Proteins/chemistry , Trastuzumab
16.
Pharmaceutics ; 14(3)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35335936

ABSTRACT

Dual-function nanogels (particle size from 98 to 224 nm) synthesized via surfactant-free emulsion polymerization (SFEP) were tested as smart carriers toward synergistic chemo- and photothermal therapy. Cisplatin (CDDP) or doxorubicin (DOX) and gold nanorods (GNRDs) were loaded into galacto-functionalized PNVCL-based nanogels, where the encapsulation efficiency for CDDP and DOX was around 64 and 52%, respectively. PNVCL-based nanogels were proven to be an efficient delivery vehicle under conditions that mimic the tumor site in vitro. The release of CDDP or DOX was slower at pH 7.4 and 37 °C than at tumor conditions of pH 6 and 40 °C. On the other hand, in the systems with GNRDs at pH 7.4 and 37 °C, the sample was irradiated with a 785 nm laser for 10 min every hour, obtaining that the release profiles were even higher than in the conditions that simulated a cancer tissue (without irradiation). Thus, the present study demonstrates the synergistic effect of chemo- and photothermal therapy as a promising dual function in the potential future use of PNVCL nanogels loaded with GNRDs and CDDP/DOX to achieve an enhanced chemo/phototherapy in vivo.

17.
J Biophotonics ; 15(6): e202100359, 2022 06.
Article in English | MEDLINE | ID: mdl-35184408

ABSTRACT

Light-sheet fluorescence microscopy (LSFM) is useful for developmental biology studies, which require a simultaneous visualization of dynamic microstructures over large fields of views (FOVs). A comparative study between multicolor Bessel and Gaussian-based LSFM systems is presented. Discussing the chromatic implications to achieve colocalized and large FOVs when both optical arrays are implemented under the same excitation objective is the purpose of this work. The light-sheets FOVs, optical sectioning, and resolution are experimentally characterized and discussed. The advantages of using Bessel beams and the main drawbacks of using Gaussian beams for multicolor imaging are highlighted. Multiple Bessel excitation minimizes the FOV's mismatch's effects due to the beams chromatic defocusing and alleviates the aside object blurring obtained with multiple Gaussian beams. It also offers a fair homogeneous axial resolution and optical sectioning over a larger effective FOV. Imaging over perithecia samples of the fungus Sordaria macrospora demonstrates such advantages. This work complements previous comparative studies that discuss only single wavelengths light-sheets excitations.


Subject(s)
Histological Techniques , Microscopy, Fluorescence/methods , Normal Distribution
18.
Clin Exp Metastasis ; 39(2): 263-277, 2022 04.
Article in English | MEDLINE | ID: mdl-35072851

ABSTRACT

While immense strides have been made in understanding tumor biology and in developing effective treatments that have substantially improved the prognosis of cancer patients, metastasis remains the major cause of cancer-related death. Improvements in the detection and treatment of primary tumors are contributing to a growing, detailed understanding of the dynamics of metastatic progression. Yet challenges remain in detecting metastatic dissemination prior to the establishment of overt metastases and in predicting which patients are at the highest risk of developing metastatic disease. Further improvements in understanding the mechanisms governing metastasis have great potential to inform the adaptation of existing therapies and the development of novel approaches to more effectively control metastatic disease. This article presents a forward-looking perspective on the challenges that remain in the treatment of metastasis, and the exciting emerging approaches that promise to transform the treatment of metastasis in cancer patients.


Subject(s)
Neoplasms , Humans , Neoplasm Metastasis , Neoplasms/pathology , Neoplasms/therapy , Prognosis
19.
medRxiv ; 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-34729567

ABSTRACT

BACKGROUND: The COVID-19 pandemic is dominated by variant viruses; the resulting impact on disease severity remains unclear. Using a retrospective cohort study, we assessed the hospitalization risk following infection with seven SARS-CoV-2 variants. METHODS: Our study includes individuals with positive SARS-CoV-2 RT-PCR in the Washington Disease Reporting System with available viral genome data, from December 1, 2020 to January 14, 2022. The analysis was restricted to cases with specimens collected through sentinel surveillance. Using a Cox proportional hazards model with mixed effects, we estimated hazard ratios (HR) for hospitalization risk following infection with a variant, adjusting for age, sex, calendar week, and vaccination. FINDINGS: 58,848 cases were sequenced through sentinel surveillance, of which 1705 (2.9%) were hospitalized due to COVID-19. Higher hospitalization risk was found for infections with Gamma (HR 3.20, 95%CI 2.40-4.26), Beta (HR 2.85, 95%CI 1.56-5.23), Delta (HR 2.28 95%CI 1.56-3.34) or Alpha (HR 1.64, 95%CI 1.29-2.07) compared to infections with ancestral lineages; Omicron (HR 0.92, 95%CI 0.56-1.52) showed no significant difference in risk. Following Alpha, Gamma, or Delta infection, unvaccinated patients show higher hospitalization risk, while vaccinated patients show no significant difference in risk, both compared to unvaccinated, ancestral lineage cases. Hospitalization risk following Omicron infection is lower with vaccination. CONCLUSION: Infection with Alpha, Gamma, or Delta results in a higher hospitalization risk, with vaccination attenuating that risk. Our findings support hospital preparedness, vaccination, and genomic surveillance. SUMMARY: Hospitalization risk following infection with SARS-CoV-2 variant remains unclear. We find a higher hospitalization risk in cases infected with Alpha, Beta, Gamma, and Delta, but not Omicron, with vaccination lowering risk. Our findings support hospital preparedness, vaccination, and genomic surveillance.

20.
J Am Chem Soc ; 143(44): 18548-18558, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34709810

ABSTRACT

Covalent assemblies of conjugated organic chromophores provide the opportunity to engineer new excited states with novel properties. In this work, a newly developed triple-stranded cage architecture, in which meta-substituted aromatic caps serve as covalent linking groups that attach to both top and bottom of the conjugated molecule walls, is used to tune the properties of thiophene oligomer assemblies. Benzene-capped and triazine-capped 5,5'-(2,2-bithiophene)-containing arylene cages are synthesized and characterized using steady-state and time-resolved spectroscopic methods. The conformational freedom and electronic states are analyzed using time-dependent density functional theory. The benzene cap acts as a passive spacer whose electronic states do not mix with those of the chromophore walls. The excited state properties are dominated by through-space interactions between the chromophore subunits, generating a neutral Frenkel H-type exciton state. This excitonic state undergoes intersystem crossing on a 200 ps time scale while the fluorescence output is suppressed by a factor of 2 due to a decreased radiative rate. Switching to a triazine cap enables electron transfer from the chromophore-linker after the initial excitation to the exciton state, leading to the formation of a charge-transfer state within 10 ps. This state can avoid intersystem crossing and exhibits red-shifted fluorescence with enhanced quantum yield. The ability to interchange structural modules with different electronic properties while retaining the overall cage morphology provides a new approach for tuning the properties of discrete chromophore assemblies.

SELECTION OF CITATIONS
SEARCH DETAIL
...