Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Antioxidants (Basel) ; 12(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37371933

ABSTRACT

Oxidative stress adaptation strategies are important to cell function and are linked to cardiac, neurodegenerative disease, and cancer. Representatives of the Archaea domain are used as model organisms based on their extreme tolerance to oxidants and close evolutionary relationship with eukaryotes. A study of the halophilic archaeon Haloferax volcanii reveals lysine acetylation to be associated with oxidative stress responses. The strong oxidant hypochlorite: (i) stimulates an increase in lysine acetyltransferase HvPat2 to HvPat1 abundance ratios and (ii) selects for lysine deacetylase sir2 mutants. Here we report the dynamic occupancy of the lysine acetylome of glycerol-grown H. volcanii as it shifts in profile in response to hypochlorite. These findings are revealed by the: (1) quantitative multiplex proteomics of the SILAC-compatible parent and Δsir2 mutant strains and (2) label-free proteomics of H26 'wild type' cells. The results show that lysine acetylation is associated with key biological processes including DNA topology, central metabolism, cobalamin biosynthesis, and translation. Lysine acetylation targets are found conserved across species. Moreover, lysine residues modified by acetylation and ubiquitin-like sampylation are identified suggesting post-translational modification (PTM) crosstalk. Overall, the results of this study expand the current knowledge of lysine acetylation in Archaea, with the long-term goal to provide a balanced evolutionary perspective of PTM systems in living organisms.

2.
Methods Mol Biol ; 2522: 255-266, 2022.
Article in English | MEDLINE | ID: mdl-36125755

ABSTRACT

The development of mass spectrometry (MS)-based proteomics methods has been critical in providing new insight about cellular processes and adaptations in all domains of life. While traditional MS-based methods are not inherently quantitative, technologies are now available to overcome this limitation. Of note, stable isotope labeling of amino acids in cell culture (SILAC) is reported as a reliable tool to label proteomes for quantitative MS-based proteomics that is accurate and flexible for multiplexing. The isotopically labeled lysine and arginine are easily incorporated into the proteome of cells auxotrophic for these amino acids. Microorganisms of the domain Archaea provide a fascinating alternative to understanding cellular adaptations and responses to environmental stresses. However, the availability of preferred SILAC-based quantitative analyses is limited. This protocol describes the use of SILAC to quantitatively analyze the proteome of Haloferax volcanii, a mesophilic halophilic archaeon that is easy to grow and requires no special equipment to maintain.


Subject(s)
Haloferax volcanii , Amino Acids/chemistry , Arginine , Cell Culture Techniques , Isotope Labeling/methods , Lysine , Mass Spectrometry/methods , Proteome/analysis
3.
mBio ; 13(4): e0063322, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35856564

ABSTRACT

Oxidative stress causes cellular damage, including DNA mutations, protein dysfunction, and loss of membrane integrity. Here, we discovered that a TrmB (transcription regulator of mal operon) family protein (Pfam PF01978) composed of a single winged-helix DNA binding domain (InterPro IPR002831) can function as thiol-based transcriptional regulator of oxidative stress response. Using the archaeon Haloferax volcanii as a model system, we demonstrate that the TrmB-like OxsR is important for recovery of cells from hypochlorite stress. OxsR is shown to bind specific regions of genomic DNA, particularly during hypochlorite stress. OxsR-bound intergenic regions were found proximal to oxidative stress operons, including genes associated with thiol relay and low molecular weight thiol biosynthesis. Further analysis of a subset of these sites revealed OxsR to function during hypochlorite stress as a transcriptional activator and repressor. OxsR was shown to require a conserved cysteine (C24) for function and to use a CG-rich motif upstream of conserved BRE/TATA box promoter elements for transcriptional activation. Protein modeling suggested the C24 is located at a homodimer interface formed by antiparallel α helices, and that oxidation of this cysteine would result in the formation of an intersubunit disulfide bond. This covalent linkage may promote stabilization of an OxsR homodimer with the enhanced DNA binding properties observed in the presence of hypochlorite stress. The phylogenetic distribution TrmB family proteins, like OxsR, that have a single winged-helix DNA binding domain and conserved cysteine residue suggests this type of redox signaling mechanism is widespread in Archaea. IMPORTANCE TrmB-like proteins, while not yet associated with redox stress, are found in bacteria and widespread in archaea. Here, we expand annotation of a large group of TrmB-like single winged-helix DNA binding domain proteins from diverse archaea to function as thiol-based transcriptional regulators of oxidative stress response. Using Haloferax volcanii as a model, we reveal that the TrmB-like OxsR functions during hypochlorite stress as a transcriptional activator and repressor of an extensive gene coexpression network associated with thiol relay and other related activities. A conserved cysteine residue of OxsR serves as the thiol-based sensor for this function and likely forms an intersubunit disulfide bond during hypochlorite stress that stabilizes a homodimeric configuration with enhanced DNA binding properties. A CG-rich DNA motif in the promoter region of a subset of sites identified to be OxsR-bound is required for regulation; however, not all sites have this motif, suggesting added complexity to the regulatory network.


Subject(s)
Archaeal Proteins , Transcription Factors , Archaea/genetics , Archaeal Proteins/genetics , Cysteine/metabolism , Disulfides , Hypochlorous Acid , Oxidation-Reduction , Oxidative Stress , Phylogeny , Sulfhydryl Compounds , Transcription Factors/metabolism
4.
Stem Cells Transl Med ; 11(7): 688-703, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35640138

ABSTRACT

MSC (a.k.a. mesenchymal stem cell or medicinal signaling cell) cell therapies show promise in decreasing mortality in acute respiratory distress syndrome (ARDS) and suggest benefits in treatment of COVID-19-related ARDS. We performed a meta-analysis of published trials assessing the efficacy and adverse events (AE) rates of MSC cell therapy in individuals hospitalized for COVID-19. Systematic searches were performed in multiple databases through November 3, 2021. Reports in all languages, including randomized clinical trials (RCTs), non-randomized interventional trials, and uncontrolled trials, were included. Random effects model was used to pool outcomes from RCTs and non-randomized interventional trials. Outcome measures included all-cause mortality, serious adverse events (SAEs), AEs, pulmonary function, laboratory, and imaging findings. A total of 736 patients were identified from 34 studies, which included 5 RCTs (n = 235), 7 non-randomized interventional trials (n = 370), and 22 uncontrolled comparative trials (n = 131). Patients aged on average 59.4 years and 32.2% were women. When compared with the control group, MSC cell therapy was associated with a reduction in all-cause mortality (RR = 0.54, 95% CI: 0.35-0.85, I  2 = 0.0%), reduction in SAEs (IRR = 0.36, 95% CI: 0.14-0.90, I  2 = 0.0%) and no significant difference in AE rate. A sub-group with pulmonary function studies suggested improvement in patients receiving MSC. These findings support the potential for MSC cell therapy to decrease all-cause mortality, reduce SAEs, and improve pulmonary function compared with conventional care. Large-scale double-blinded, well-powered RCTs should be conducted to further explore these results.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Aged , COVID-19/therapy , Cell- and Tissue-Based Therapy , Female , Humans , Male , Respiratory Distress Syndrome/therapy
5.
Methods Enzymol ; 659: 297-313, 2021.
Article in English | MEDLINE | ID: mdl-34752290

ABSTRACT

Haloarchaea and their enzymes have extremophilic properties desirable for use as platform organisms and biocatalysts in the bioindustry. These GRAS (generally regarded as safe) designated microbes thrive in hypersaline environments and use a salt-in strategy to maintain osmotic homeostasis. This unusual strategy has resulted in the evolution of most of the intracellular and extracellular enzymes of haloarchaea to be active and stable not only in high salt (2-5M) but also in low salt (0.2M). This salt tolerance is correlated with a resilience to low water activity, thus, rendering the haloarchaeal enzymes active and stable in organic solvent and temperatures of 50-60°C used in the enzymatic biodelignification and saccharification of lignocellulosic materials. High-level secretion of haloarchaeal enzymes to the extracellular milieu is useful for many applications, including enzymes that deconstruct biomass to allow for lignin depolymerization and simultaneous fermentation of sugars released from hemicellulose and cellulose fractions of lignocellulosics. Here we detail strategies and methods useful for high-level secretion of a laccase, HvLccA, that mediates oxidation of various phenolics by engineering a recombinant strain of the haloarchaeon Haloferax volcanii.


Subject(s)
Haloferax volcanii , Metalloproteins , Haloferax volcanii/genetics , Laccase/genetics , Oxidation-Reduction
6.
Methods Enzymol ; 659: 315-326, 2021.
Article in English | MEDLINE | ID: mdl-34752292

ABSTRACT

Tandem affinity purification is a useful strategy to isolate multisubunit complexes of high yield and purity but can be limited when working with halophilic proteins that are not properly expressed in Escherichia coli. Halophilic proteins are desirable for bioindustrial applications as they are often stable and active in organic solvents; however, these proteins can be difficult to express, fold, and purify by traditional technologies. Haloarchaea provide a useful alternative for expression of halophilic proteins. These microorganisms use a salt-in strategy to maintain homeostasis and express most of their proteins with halophilic properties and low pI. Here, we provide detailed protocols for the genetic modification, expression and tandem affinity purification of "salt-loving" multisubunit complexes from the haloarchaeon Haloferax volcanii. The strategy for isolation of affinity tagged 20S proteasomes that form cylindrical proteolytic nanomachines of α1, α2 and ß subunits is described.


Subject(s)
Archaeal Proteins , Haloferax volcanii , Proteasome Endopeptidase Complex , Archaeal Proteins/metabolism , Haloferax volcanii/enzymology , Haloferax volcanii/genetics , Proteasome Endopeptidase Complex/metabolism , Tandem Affinity Purification
7.
Microbiologyopen ; 9(11): e1124, 2020 11.
Article in English | MEDLINE | ID: mdl-33306280

ABSTRACT

Bacterial nitric oxide (NO) synthases (bNOS) play diverse and important roles in microbial physiology, stress resistance, and virulence. Although bacterial and mammalian NOS enzymes have been well-characterized, comparatively little is known about the prevalence and function of NOS enzymes in Archaea. Analysis of archaeal genomes revealed that highly conserved bNOS homologs were restricted to members of the Halobacteria. Of these, Natronomonas pharaonis NOS (npNOS) was chosen for further characterization. NO production was confirmed in heterologously expressed His-tagged npNOS by coupling nitrite production from N-hydroxy-L-arginine in an H2O2-supported reaction. Additionally, the nos gene was successfully targeted and disrupted to create a Nmn. pharaonis nos mutant by adapting an established Natrialba magadii transformation protocol. Genome re-sequencing of this mutant revealed an additional frameshift in a putative cation-acetate symporter gene, which could contribute to altered acetate metabolism in the nos mutant. Inactivation of Nmn. pharaonis nos was also associated with several phenotypes congruent with bacterial nos mutants (altered growth, increased oxygen consumption, increased pigment, increased UV susceptibility), suggesting that NOS function may be conserved between bacteria and archaea. These studies are the first to describe genetic inactivation and characterization of a Nmn. pharaonis gene and provides enhanced tools for probing its physiology.


Subject(s)
Genome, Archaeal/genetics , Halobacteriaceae/enzymology , Halobacteriaceae/genetics , Nitric Oxide Synthase/genetics , Nitric Oxide/biosynthesis , Acetates/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Hydrogen Peroxide/metabolism , Nitric Oxide Synthase/analysis , Oxidation-Reduction , Oxygen Consumption/physiology
8.
Stem Cells Dev ; 29(5): 257-262, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31797749

ABSTRACT

Although adipose tissue and cells show considerable promise for clinical translation in the emerging field of regenerative medicine, they present a challenge to the regulatory community both nationally and internationally. This commentary evaluates the status of adipose-derived therapeutics and considers regulatory approaches designed to maximize patient safety while advancing clinical translation in accordance with evidence-based medical science.


Subject(s)
Stromal Cells/physiology , Adipose Tissue/physiology , Cell- and Tissue-Based Therapy/methods , Humans , Regenerative Medicine/methods
9.
Genes (Basel) ; 10(6)2019 05 31.
Article in English | MEDLINE | ID: mdl-31159288

ABSTRACT

The Cabo Rojo solar salterns are a hypersaline environment located in a tropical climate, where conditions remain stable throughout the year. These conditions can favor the establishment of steady microbial communities. Little is known about the microbial composition that thrives in hypersaline environments in the tropics. The main goal of this study was to assess the microbial diversity present in the crystallizer ponds of Cabo Rojo, in terms of structure and metabolic processes across time using metagenomic techniques. Three samplings (December 2014, March and July 2016) were carried out, where water samples (50 L each) were filtered through a Millipore pressurized filtering system. DNA was subsequently extracted using physical-chemical methods and sequenced using paired end Illumina technologies. The sequencing effort produced three paired end libraries with a total of 111,816,040 reads, that were subsequently assembled into three metagenomes. Out of the phyla detected, the microbial diversity was dominated in all three samples by Euryarchaeota, followed by Bacteroidetes and Proteobacteria. However, sample MFF1 (for Muestreo Final Fraternidad) exhibited a higher diversity, with 12 prokaryotic phyla detected at 34% NaCl (w/v), when compared to samples MFF2 and MFF3, which only exhibited three phyla. Precipitation events might be one of the contributing factors to the change in the microbial community composition through time. Diversity at genus level revealed a more stable community structure, with an overwhelming dominance of the square archaeon Haloquadratum in the three metagenomes. Furthermore, functional annotation was carried out in order to detect genes related to metabolic processes, such as carbon, nitrogen, and sulfur cycles. The presence of gene sequences related to nitrogen fixation, ammonia oxidation, sulfate reduction, sulfur oxidation, and phosphate solubilization were detected. Through binning methods, four putative novel genomes were obtained, including a possible novel genus belonging to the Bacteroidetes and possible new species for the genera Natronomonas, Halomicrobium, and Haloquadratum. Using a metagenomic approach, a 3-year study has been performed in a Caribbean hypersaline environment. When compared to other salterns around the world, the Cabo Rojo salterns harbor a similar community composition, which is stable through time. Moreover, an analysis of gene composition highlights the importance of the microbial community in the biogeochemical cycles at hypersaline environments.


Subject(s)
Metagenome/genetics , Metagenomics , Microbiota/genetics , Phylogeny , Bacteroidetes/genetics , Euryarchaeota/genetics , Ponds/microbiology , Proteobacteria/genetics , Puerto Rico , Tropical Climate , Water Microbiology
10.
Stem Cells Transl Med ; 4(12): 1472-81, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26511652

ABSTRACT

UNLABELLED: Stromal vascular fraction (SVF) cells are used clinically for various therapeutic targets. The location and persistence of engrafted SVF cells are important parameters for determining treatment failure versus success. We used the GID SVF-1 platform and a clinical protocol to harvest and label SVF cells with the fluorinated ((19)F) agent CS-1000 as part of a first-in-human phase I trial (clinicaltrials.gov identifier NCT02035085) to track SVF cells with magnetic resonance imaging during treatment of radiation-induced fibrosis in breast cancer patients. Flow cytometry revealed that SVF cells consisted of 25.0% ± 15.8% CD45+, 24.6% ± 12.5% CD34+, and 7.5% ± 3.3% CD31+ cells, with 2.1 ± 0.7 × 105 cells per cubic centimeter of adipose tissue obtained. Fluorescent CS-1000 (CS-ATM DM Green) labeled 87.0% ± 13.5% of CD34+ progenitor cells compared with 47.8% ± 18.5% of hematopoietic CD45+ cells, with an average of 2.8 ± 2.0 × 10¹² ¹9F atoms per cell, determined using nuclear magnetic resonance spectroscopy. The vast majority (92.7% ± 5.0%) of CD31+ cells were also labeled, although most coexpressed CD34. Only 16% ± 22.3% of CD45-/CD31-/CD34- (triple-negative) cells were labeled with CS-ATM DM Green. After induction of cell death by either apoptosis or necrosis, >95% of ¹9F was released from the cells, indicating that fluorine retention can be used as a surrogate marker for cell survival. Labeled-SVF cells engrafted in a silicone breast phantom could be visualized with a clinical 3-Tesla magnetic resonance imaging scanner at a sensitivity of approximately 2 × 106 cells at a depth of 5 mm. The current protocol can be used to image transplanted SVF cells at clinically relevant cell concentrations in patients. SIGNIFICANCE: Stromal vascular fraction (SVF) cells harvested from adipose tissue offer great promise in regenerative medicine, but methods to track such cell therapies are needed to ensure correct administration and monitor survival. A clinical protocol was developed to harvest and label SVF cells with the fluorinated (¹9F) agent CS-1000, allowing cells to be tracked with (19)F magnetic resonance imaging (MRI). Flow cytometry evaluation revealed heterogeneous ¹9F uptake in SVF cells, confirming the need for careful characterization. The proposed protocol resulted in sufficient ¹9F uptake to allow imaging using a clinical MRI scanner with point-of-care processing.


Subject(s)
Flow Cytometry , Fluorine-19 Magnetic Resonance Imaging/methods , Fluorine/chemistry , Staining and Labeling/methods , Stem Cells/diagnostic imaging , Stem Cells/metabolism , Adult , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/radiotherapy , Cell Survival , Female , Fibrosis/diagnostic imaging , Fibrosis/pathology , Fibrosis/therapy , Fluorine/pharmacology , Humans , Middle Aged , Radiation Injuries/diagnostic imaging , Radiation Injuries/pathology , Radiation Injuries/therapy , Radiography , Stem Cell Transplantation , Stromal Cells/diagnostic imaging , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...