Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitol Res ; 123(3): 173, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536506

ABSTRACT

Balamuthia mandrillaris is the causative agent of granulomatous amoebic encephalitis, a rare and often fatal infection affecting the central nervous system. The amoeba is isolated from diverse environmental sources and can cause severe infections in both immunocompromised and immunocompetent individuals. Given the limited understanding of B. mandrillaris, our research aimed to explore its protein profile, identifying potential immunogens crucial for early granulomatous amoebic encephalitis diagnosis. Cultures of B. mandrillaris and other amoebas were grown under axenic conditions, and total amoebic extracts were obtained. Proteomic analyses, including two-dimensional electrophoresis and mass spectrometry, were performed. A 50-kDa band showed a robust recognition of antibodies from immunized BALB/c mice; peptides contained in this band were matched with elongation factor-1 alpha, which emerged as a putative key immunogen. Besides, lectin blotting revealed the presence of glycoproteins in B. mandrillaris, and confocal microscopy demonstrated the focal distribution of the 50-kDa band throughout trophozoites. Cumulatively, these observations suggest the participation of the 50-kDa band in adhesion and recognition mechanisms. Thus, these collective findings demonstrate some protein characteristics of B. mandrillaris, opening avenues for understanding its pathogenicity and developing diagnostic and therapeutic strategies.


Subject(s)
Amebiasis , Amoeba , Balamuthia mandrillaris , Infectious Encephalitis , Animals , Mice , Proteomics , Amebiasis/drug therapy
2.
Sci Rep ; 13(1): 14318, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37653073

ABSTRACT

Balamuthia mandrillaris is a pathogenic protozoan that causes a rare but almost always fatal infection of the central nervous system and, in some cases, cutaneous lesions. Currently, the genomic data for this free-living amoeba include the description of several complete mitochondrial genomes. In contrast, two complete genomes with draft quality are available in GenBank, but none of these have a functional annotation. In the present study, the complete genome of B. mandrillaris isolated from a freshwater artificial lagoon was sequenced and assembled, obtaining an assembled genome with better assembly quality parameter values than the currently available genomes. Afterward, the genome mentioned earlier, along with strains V039 and 2046, were subjected to functional annotation. Finally, comparative genomics analysis was performed, and it was found that homologous genes in the core genome potentially involved in the virulence of Acanthamoeba spp. and Trypanosoma cruzi. Moreover, eleven of fifteen genes were identified in the three strains described as potential target genes to develop new treatment approaches for B. mandrillaris infections. These results describe proteins in this protozoan's complete genome and help prioritize which target genes could be used to develop new treatments.


Subject(s)
Acanthamoeba , Balamuthia mandrillaris , Balamuthia mandrillaris/genetics , Virulence/genetics , Comparative Genomic Hybridization , Acanthamoeba/genetics , Genomics
3.
Pathogens ; 11(10)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36297255

ABSTRACT

Free-living amoebae (FLA) are protozoa widely distributed in the environment, found in a great diversity of terrestrial biomes. Some genera of FLA are linked to human infections. The genus Acanthamoeba is currently classified into 23 genotypes (T1-T23), and of these some (T1, T2, T4, T5, T10, T12, and T18) are known to be capable of causing granulomatous amoebic encephalitis (GAE) mainly in immunocompromised patients while other genotypes (T2, T3, T4, T5, T6, T10, T11, T12, and T15) cause Acanthamoeba keratitis mainly in otherwise healthy patients. Meanwhile, Naegleria fowleri is the causative agent of an acute infection called primary amoebic meningoencephalitis (PAM), while Balamuthia mandrillaris, like some Acanthamoeba genotypes, causes GAE, differing from the latter in the description of numerous cases in patients immunocompetent. Finally, other FLA related to the pathologies mentioned above have been reported; Sappinia sp. is responsible for one case of amoebic encephalitis; Vermamoeba vermiformis has been found in cases of ocular damage, and its extraordinary capacity as endocytobiont for microorganisms of public health importance such as Legionella pneumophila, Bacillus anthracis, and Pseudomonas aeruginosa, among others. This review addressed issues related to epidemiology, updating their geographic distribution and cases reported in recent years for pathogenic FLA.

4.
Animals (Basel) ; 13(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36611655

ABSTRACT

An 8-week feeding trial investigated the effect of Fishmeal (FM) replacement by soybean meal (SBM) and poultry by-product meal (PBM) in diets supplemented with DL-Met, MET-MET (AQUAVI®), Bacillus amyloliquefaciens CECT 5940 (ECOBIOL®) and their combinations on growth performance and health of juvenile Litopenaeus vannamei. A total of six experimental diets were formulated according to L. vannamei nutritional requirements. A total of 480 shrimp (0.30 ± 0.04 g) were randomly distributed into 24 tanks (4 repetitions/each diet, 20 shrimp/tank). Shrimp were fed with control diet (CD; 200 g/Kg fishmeal) and five diets with 50% FM replacement supplemented with different methionine sources, probiotic (B. amyloliquefaciens CECT 5940) and their combinations: D1 (0.13% DL-MET), D2 (0.06% MET-MET), D3 (0.19% MET-MET), D4 (0.13% DL-MET plus 0.10% B. amyloliquefaciens CECT 5940 and D5 (0.06% MET-MET plus 0.10% B. amyloliquefaciens CECT 5940). Shrimp fed D3 and D5 had significantly higher final, weekly weight gain, and final biomass compared to shrimp fed CD (p < 0.05). Shrimp fed D2 to D5 increased the hepatopancreas epithelial cell height (p < 0.05). Digestive enzymatic activities were significantly increased in shrimp hepatopancreas' fed D3 (p < 0.05). Meanwhile, shrimp fed D1 had significant downregulation of immune-related genes (p < 0.05). Moreover, shrimp fed D3 and D5 increased the abundance of beneficial prokaryotic microorganisms such as Pseudoalteromonas and Demequina related to carbohydrate metabolism and immune stimulation. Also, shrimp fed D3 and D5 increased the abundance of beneficial eukaryotic microorganism as Aurantiochytrium and Aplanochytrium were related to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) production which plays a role in growth promoting or boosting the immunity of aquatic organisms. Therefore, fishmeal could be partially substituted up to 50% by SBM and PBM in diets supplemented with 0.19% MET-MET (AQUAVI®) or 0.06% MET-MET (AQUAVI®) plus 0.10% B. amyloliquefaciens CECT 5940 (ECOBIOL®) and improve the productive performance, health, and immunity of white shrimp. Further research is necessary to investigate synergistic effects of amino acids and probiotics in farmed shrimp diets, as well as to evaluate how SBM and PBM influence the fatty acid composition of reduced fishmeal diets and shrimp muscle quality. Nevertheless, this information could be interesting to develop low fishmeal feeds for aquaculture without affecting the growth and welfare of aquatic organisms.

5.
Parasite ; 28: 36, 2021.
Article in English | MEDLINE | ID: mdl-33843581

ABSTRACT

In this review, we focus on the sequenced genomes of the pathogens Naegleria fowleri, Acanthamoeba spp. and Balamuthia mandrillaris, and the remarkable discoveries regarding the pathogenicity and genetic information of these organisms, using techniques related to the various omics branches like genomics, transcriptomics, and proteomics. Currently, novel data produced through comparative genomics analyses and both differential gene and protein expression in these free-living amoebas have allowed for breakthroughs to identify genes unique to N. fowleri, genes with active transcriptional activity, and their differential expression in conditions of modified virulence. Furthermore, orthologous genes of the various nuclear genomes within the Naegleria and Acanthamoeba genera have been clustered. The proteome of B. mandrillaris has been reconstructed through transcriptome data, and its mitochondrial genome structure has been thoroughly described with a unique characteristic that has come to light: a type I intron with the capacity of interrupting genes through its self-splicing ribozymes activity. With the integration of data derived from the diverse omic sciences, there is a potential approximation that reflects the molecular complexity required for the identification of virulence factors, as well as crucial information regarding the comprehension of the molecular mechanisms with which these interact. Altogether, these breakthroughs could contribute to radical advances in both the fields of therapy design and medical diagnosis in the foreseeable future.


TITLE: Application des sciences de l'omique à l'étude de Naegleria fowleri, Acanthamoeba spp. et Balamuthia mandrillaris : état actuel et projections futures. ABSTRACT: Dans cette revue, l'accent est mis sur les génomes séquencés des agents pathogènes Naegleria fowleri, Acanthamoeba spp. et Balamuthia mandrillaris, et les découvertes remarquables concernant la pathogénicité et l'information génétique de ces organismes, en utilisant des techniques liées aux diverses branches de l'omique comme la génomique, la transcriptomique et la protéomique. Actuellement, de nouvelles données produites par des analyses génomiques comparatives et l'expression différentielle des gènes et des protéines dans ces amibes libres ont permis des percées pour identifier des gènes uniques à N. fowleri, des gènes avec une activité transcriptionnelle active et leur expression différentielle dans des conditions de virulence modifiée. En outre, les gènes orthologues des divers génomes nucléaires des genres Naegleria et Acanthamoeba ont été regroupés. Le protéome de B. mandrillaris a été reconstruit grâce aux données du transcriptome, et la structure de son génome mitochondrial décrite de manière détaillée, mettant ainsi une caractéristique unique à jour : un intron de type I avec la capacité d'interrompre les gènes par son activité d'auto-épissage des ribozymes. Avec l'intégration des données issues des diverses sciences omiques, il existe une approximation potentielle qui reflète la complexité moléculaire requise pour l'identification des facteurs de virulence, ainsi que des informations cruciales concernant la compréhension des mécanismes moléculaires avec lesquels ceux-ci interagissent. Dans l'ensemble, ces percées pourraient contribuer à des progrès notables à la fois dans les domaines de la conception de la thérapie et du diagnostic médical dans un avenir proche.


Subject(s)
Acanthamoeba , Balamuthia mandrillaris , Naegleria fowleri , Acanthamoeba/genetics , Balamuthia mandrillaris/genetics , Genome, Protozoan , Genomics , Naegleria fowleri/genetics , Proteomics , Transcriptome , Virulence
6.
Pathogens ; 9(7)2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32709092

ABSTRACT

Two amoeboid organisms were obtained from water samples taken from a thermal spring, "Agua Caliente", in Northwestern Mexico. The isolates were obtained when samples were cultivated at 37 °C on non-nutrient agar coated with Escherichia coli. The initial identification of the isolates was performed morphologically using light microscopy. The samples were found to have trophozoite morphology consistent with members of the genus Stenamoeba, a genus derived in 2007 from within the abolished polyphyletic genus Platyamoeba. Further analysis was performed by sequencing PCR products obtained using universal eukaryotic primers for the small subunit ribosomal ribonucleic acid (SSU rRNA) gene. Sequencing primers were designed to allow the comparison of the 18S rRNA gene sequences of the new isolates with previous sequences reported for Stenamoeba. Phylogenetic relationships among sequences from Stenamoeba were determined using Maximum Likelihood analysis. The results showed the two "Agua Caliente" sequences to be closely related, while clearly separating them from those of other Stenamoeba taxa. The degrees of sequence differentiation from other taxa were considered sufficient to allow us to propose that the Mexican isolates represent a new species.

7.
Parasitol Int ; 74: 102002, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31669294

ABSTRACT

Acanthamoeba spp. are free-living amoebae with a worldwide distribution. These amoebae can cause granulomatous amoebic encephalitis and amoebic keratitis in humans. Proteases are considered virulence factors in pathogenic Acanthamoeba. The objective of this study was to evaluate the behavior of Acanthamoeba mauritaniensis, a nonpathogenic amoeba. We analyzed the cytopathic effect of A. mauritaniensis on RCE1(5 T5) and MDCK cells and compared it to that of Acanthamoeba castellanii. A partial biochemical characterization of proteases was performed in total crude extracts (TCE) and conditioned medium (CM). Finally, we evaluated the effect of proteases on tight junction (TJ) proteins and the transepithelial electrical resistance of MDCK cells. The results showed that this amoeba can induce substantial damage to RCE1(5T5) and MDCK cells. Moreover, the zymograms and Azocoll assays of amoebic TCE and CM revealed different protease activities, with serine proteases being the most active. Furthermore, A. mauritaniensis induced the alteration and degradation of MDCK cell TJ proteins with serine proteases. After genotyping this amoeba, we determined that it is an isolate of Acanthamoeba genotype T4D. From these data, we suggest that A. mauritaniensis genotype T4D behaves similarly to the A. castellanii strain.


Subject(s)
Acanthamoeba/genetics , Acanthamoeba/pathogenicity , Genotype , Acanthamoeba/enzymology , Animals , Dogs , Epithelial Cells/parasitology , Epithelial Cells/pathology , Madin Darby Canine Kidney Cells , Serine Proteases/metabolism , Tight Junction Proteins/metabolism
8.
Genome Announc ; 4(2)2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26966222

ABSTRACT

The first genome sequence of a Mexican white spot syndrome virus is presented here. White spot syndrome is a shrimp pandemic virus that has devastated production in Mexico for more than 10 years. The availability of this genome will greatly aid epidemiological studies worldwide, contributing to the molecular diagnostic and disease prevention in shrimp farming.

SELECTION OF CITATIONS
SEARCH DETAIL
...