Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Front Microbiol ; 14: 1233661, 2023.
Article in English | MEDLINE | ID: mdl-38318128

ABSTRACT

Growing knowledge of the host-microbiota of vertebrates has shown the prevalence of sex-specific differences in the microbiome. However, there are virtually no studies assessing sex-associated variation in the microbiome of cephalopods. Here we assess sex-specific variation in the common octopus (Octopus vulgaris) skin microbiome using amplicon sequencing targeting the V4 hypervariable region of prokaryote 16S rRNA genes. Skin and mantle-associated mucus was collected from wild adult individuals of common Octopus (Octopus vulgaris) (9 males and 7 females of similar size). There were no significant differences in the alpha diversity of microbial communities associated with skin or mantle mucosa between sexes. However, our results clearly indicate that adult octopus males and females have a distinct microbial community composition in both skin and mantle associated mucus communities, with female microbiome being dominated by Firmicutes (48.1%), while that of males contained a majority of Proteobacteria (60.5%), with Firmicutes representing only 3.30%, not finding significant differentiation in the microbial communities between the tissues explored. The dominance of different taxa in the skin of O. vulgaris females and males (e.g., Mycoplasmatales and Lactococcus in females and Rhizobiales and Rhodobacteriales in males) suggests a sex-specific symbiosis in which those microbes benefit from easy access to distinct substrates present in female and male skin, respectively. Given the lack of differences in size between specimens of both sexes in this study, we hypothesize differences in hormone profile, as well as behavioral or ecological differences between sexes in the wild, as the main drivers of microbiome differentiation between sexes. Most knowledge of cephalopod microbiota is limited to the digestive tract and the reproductive system. However, cephalopod skin is an organ with a plethora of functions. This is a first attempt to characterize cephalopod skin microbiota and determine sex influence on it.

2.
Sci Total Environ ; 790: 148054, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34111787

ABSTRACT

River fragmentation caused by instream barriers is a leading cause of biodiversity loss, particularly for freshwater migratory fish, the vertebrate group that has suffered the steepest decline. However, most studies have tended to focus on the impacts of large dams on only a few taxa. We estimated the cumulative impact of both large and small barriers on fish species richness and relative abundance along an altitudinal gradient in the main stem of the River Allier (France). Using eDNA metabarcoding, we identified 24 fish zero-radius operational taxonomic units (zOTUs), corresponding to 26 species distributed along the main stem of the river. Elevation explained the greatest amount of variation in fish distribution, together with average flow, barrier density and its interaction with cumulative barrier height. Based on eDNA, the largest discontinuity in species richness was not related to the location of Poutès, the largest dam in the system, but located downstream from it. Our results indicate that, in addition to the more obvious effects of large dams on migratory fish such as the Atlantic salmon, the cumulative effects of small barriers can have widespread impacts on fish species richness and relative abundance, which should not be overlooked. We suggest that, as for other fragmented rivers, acting on numerous small barriers might bring about greater benefits in fish species richness than focusing only on the largest dams.


Subject(s)
DNA, Environmental , Animals , Biodiversity , DNA Barcoding, Taxonomic , Ecosystem , Fishes/genetics , Rivers
3.
Ecol Appl ; 31(3): e02284, 2021 04.
Article in English | MEDLINE | ID: mdl-33415761

ABSTRACT

Accurate assessment of larval community composition in spawning areas is essential for fisheries management and conservation but is often hampered by the cryptic nature of many larvae, which renders them difficult to identify morphologically. Metabarcoding is a rapid and cost-effective method to monitor early life stages for management and environmental impact assessment purposes but its quantitative capability is under discussion. We compared metabarcoding with traditional morphological identification to evaluate taxonomic precision and reliability of abundance estimates, using 332 fish larvae from multinet hauls (0-50 m depth) collected at 14 offshore sampling sites in the Irish and Celtic seas. To improve quantification accuracy (relative abundance estimates), the amount of tissue for each specimen was standardized and mitochondrial primers (12S gene) with conserved binding sites were used. Relative family abundance estimated from metabarcoding reads and morphological assessment were positively correlated, as well as taxon richness (RS  = 0.81, P = 0.007) and diversity (RS  = 0.90, P = 0.002). Spatial patterns of community composition did not differ significantly between metabarcoding and morphological assessments. Our results show that DNA metabarcoding of bulk tissue samples can be used to monitor changes in fish larvae abundance and community composition. This represents a feasible, efficient, and faster alternative to morphological methods that can be applied to terrestrial and aquatic habitats.


Subject(s)
DNA Barcoding, Taxonomic , Fishes , Animals , Biodiversity , Fishes/genetics , Larva/genetics , Oceans and Seas , Reproducibility of Results
4.
Front Microbiol ; 11: 1621, 2020.
Article in English | MEDLINE | ID: mdl-32765459

ABSTRACT

Exposure to environmental stressors can compromise fish health and fitness. Little is known about how stress-induced microbiome disruption may contribute to these adverse health effects, including how cortisol influences fish microbial communities. We exposed juvenile Atlantic salmon to a mild confinement stressor for two weeks. We then measured cortisol in the plasma, skin-mucus, and feces, and characterized the skin and fecal microbiome. Fecal and skin cortisol concentrations increased in fish exposed to confinement stress, and were positively correlated with plasma cortisol. Elevated fecal cortisol was associated with pronounced changes in the diversity and structure of the fecal microbiome. In particular, we identified a marked decline in the lactic acid bacteria Carnobacterium sp. and an increase in the abundance of operational taxonomic units within the classes Clostridia and Gammaproteobacteria. In contrast, cortisol concentrations in skin-mucus were lower than in the feces, and were not related to any detectable changes in the skin microbiome. Our results demonstrate that stressor-induced cortisol production is associated with disruption of the gut microbiome, which may, in turn, contribute to the adverse effects of stress on fish health. They also highlight the value of using non-invasive fecal samples to monitor stress, including simultaneous determination of cortisol and stress-responsive bacteria.

5.
Fish Shellfish Immunol ; 104: 192-201, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32534231

ABSTRACT

Infectious diseases represent an important barrier to sustainable aquaculture development. Rearing density can substantially impact fish productivity, health and welfare in aquaculture, including growth rates, behaviour and, crucially, immune activity. Given the current emphasis on aquaculture diversification, stress-related indicators broadly applicable across species are needed. Utilising an interspecific comparative transcriptomic (RNAseq) approach, we compared gill gene expression responses of Atlantic salmon (Salmo salar) and Nile tilapia (Oreochromis niloticus) to rearing density and Saprolegnia parasitica infection. Salmon reared at high-density showed increased expression of stress-related markers (e.g. c-fos and hsp70), and downregulation of innate immune genes. Upon pathogen challenge, only salmon reared at low density exhibited increased expression of inflammatory interleukins and lymphocyte-related genes. Tilapia immunity, in contrast, was impaired at low-density. Using overlapping gene ontology enrichment and gene ortholog analyses, we found that density-related stress similarly impacted salmon and tilapia in key immune pathways, altering the expression of genes vital to inflammatory and Th17 responses to pathogen challenge. Given the challenges posed by ectoparasites and gill diseases in fish farms, this study underscores the importance of optimal rearing densities for immunocompetence, particularly for mucosal immunity. Our comparative transcriptomics analyses identified density stress impacted immune markers common across different fish taxa, providing key molecular targets with potential for monitoring and enhancing aquaculture resilience in a wide range of farmed species.


Subject(s)
Aquaculture/methods , Cichlids , Fish Diseases , Infections , Salmo salar , Saprolegnia , Animals , Cichlids/genetics , Cichlids/immunology , Fish Diseases/genetics , Fish Diseases/immunology , Infections/genetics , Infections/immunology , Infections/veterinary , Population Density , Salmo salar/genetics , Salmo salar/immunology , Transcriptome
6.
Mol Ecol ; 29(12): 2288-2299, 2020 06.
Article in English | MEDLINE | ID: mdl-32434269

ABSTRACT

Parental effects influence offspring phenotypes through pre- and post-natal routes but little is known about their molecular basis, and therefore their adaptive significance. Epigenetic modifications, which control gene expression without changes in the DNA sequence and are influenced by the environment, may contribute to parental effects. We investigated the effects of environmental enrichment on the behaviour, metabolic rate and brain DNA methylation patterns of parents and offspring of the highly inbreed mangrove killifish (Kryptolebias marmoratus). Parental fish reared in enriched environments had lower cortisol levels, lower metabolic rates and were more active and neophobic than those reared in barren environments. They also differed in 1,854 methylated cytosines (DMCs). Offspring activity and neophobia were determined by the parental environment. Among the DMCs of the parents, 98 followed the same methylation patterns in the offspring, three of which were significantly influenced by parental environments irrespective of their own rearing environment. Our results suggest that parental environment influences the behaviour and, to some extent, the brain DNA methylation patterns of the offspring.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Fishes/genetics , Adaptation, Physiological/genetics , Animals , Behavior, Animal , Cytosine/chemistry , Energy Metabolism , Environment , Epigenomics , Hydrocortisone
7.
Mol Ecol ; 29(5): 886-898, 2020 03.
Article in English | MEDLINE | ID: mdl-32011775

ABSTRACT

Microbial communities associated with the gut and the skin are strongly influenced by environmental factors, and can rapidly adapt to change. Historical processes may also affect the microbiome. In particular, variation in microbial colonisation in early life has the potential to induce lasting effects on microbial assemblages. However, little is known about the relative extent of microbiome plasticity or the importance of historical colonisation effects following environmental change, especially for nonmammalian species. To investigate this we performed a reciprocal translocation of Atlantic salmon between artificial and semi-natural conditions. Wild and hatchery-reared fry were transferred to three common garden experimental environments for 6 weeks: standard hatchery conditions, hatchery conditions with an enriched diet, and simulated wild conditions. We characterized the faecal and skin microbiome of individual fish before and after the environmental translocation, using a BACI (before-after-control-impact) design. We found evidence of extensive microbiome plasticity for both the gut and skin, with the greatest changes in alpha and beta diversity associated with the largest changes in environment and diet. Microbiome richness and diversity were entirely determined by environment, with no detectable effects of fish origin, and there was also a near-complete turnover in microbiome structure. However, we also identified, for the first time in fish, evidence of historical colonisation effects reflecting early-life experience, including ASVs characteristic of captive rearing. These results have important implications for host adaptation to local selective pressures, and highlight how conditions experienced during early life can have a long-term influence on the microbiome and, potentially, host health.


Subject(s)
Diet , Environment , Microbiota , Salmo salar/microbiology , Animals , Aquaculture , Bacteria/classification , Feces/microbiology , Skin/microbiology
8.
Evol Appl ; 12(9): 1757-1771, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31548855

ABSTRACT

To meet future global demand for fish protein, more fish will need to be farmed using fewer resources, and this will require the selection of nonaggressive individuals that perform well at high densities. Yet, the genetic changes underlying loss of aggression and adaptation to crowding during aquaculture intensification are largely unknown. We examined the transcriptomic response to aggression and crowding in Nile tilapia, one of the oldest and most widespread farmed fish, whose social structure shifts from social hierarchies to shoaling with increasing density. A mirror test was used to quantify aggression and skin darkening (a proxy for stress) of fish reared at low and high densities, and gene expression in the hypothalamus was analysed among the most and least aggressive fish at each density. Fish reared at high density were darker, had larger brains, were less active and less aggressive than those reared at low density and had differentially expressed genes consistent with a reactive stress-coping style and activation of the hypothalamus-pituitary-interrenal (HPI) axis. Differences in gene expression among aggressive fish were accounted for by density and the interaction between density and aggression levels, whereas for nonaggressive fish differences in gene expression were associated with individual variation in skin brightness and social stress. Thus, the response to crowding in Nile tilapia is context dependent and involves different neuroendocrine pathways, depending on social status. Knowledge of genes associated with the response to crowding may pave the way for more efficient fish domestication, based on the selection of nonaggressive individuals with increasing tolerance to chronic stress necessary for aquaculture intensification.

9.
Mol Biol Evol ; 36(10): 2205-2211, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31180510

ABSTRACT

Interbreeding between hatchery-reared and wild fish, through deliberate stocking or escapes from fish farms, can result in rapid phenotypic and gene expression changes in hybrids, but the underlying mechanisms are unknown. We assessed if one generation of captive breeding was sufficient to generate inter- and/or transgenerational epigenetic modifications in Atlantic salmon. We found that the sperm of wild and captive-reared males differed in methylated regions consistent with early epigenetic signatures of domestication. Some of the epigenetic marks that differed between hatchery and wild males affected genes related to transcription, neural development, olfaction, and aggression, and were maintained in the offspring beyond developmental reprogramming. Our findings suggest that rearing in captivity may trigger epigenetic modifications in the sperm of hatchery fish that could explain the rapid phenotypic and genetic changes observed among hybrid fish. Epigenetic introgression via fish sperm represents a previously unappreciated mechanism that could compromise locally adapted fish populations.


Subject(s)
DNA Methylation , Domestication , Epigenesis, Genetic , Genetic Introgression , Salmon/metabolism , Animals , Female , Male
10.
Front Mol Neurosci ; 12: 93, 2019.
Article in English | MEDLINE | ID: mdl-31105522

ABSTRACT

The cerebellum is an essential component in the control of motor patterns. Despite dramatic alteration of basal ganglia morpho-functionality in Parkinson's disease (PD), cerebellar function appears to be unaffected by the disease. Only recently this brain structure has been proposed to play compensatory roles in PD-induced motor dysfunction, particularly during the initial asymptomatic stages of PD. In PD subjects and animal models of PD, such as MPTP-treated mice, brain structures other than basal ganglia are also affected by the disease, including cortical areas not involved in motor control. Thus, it is noteworthy that the cerebellum remains unaffected. In the present study, we have analyzed the lipid composition of membrane microdomains [lipid rafts (LR) and non-raft domains] and assessed the expression levels of genes encoding enzymes synthesizing membrane-related lipids. The outcomes revealed that membrane domain lipids in cerebellum are highly preserved both in control and MPTP-treated mice as compared to control animals. Likewise, only small, mostly not significant, changes were observed in the expression of lipid-related genes in the cerebellum. Indeed, most changes were related to aging rather than to the exposure to the neurotoxin. Conversely, in the same animals, lipid composition, and gene expression were dramatically altered in the occipital cortex (OC), a brain area unrelated to the control of motor function. PCR and immunohistochemical analyses of both brain areas revealed that dopamine transporter (DAT) mRNA and protein were expressed in OC but not in the cerebellum. As MPTP neurotoxicity requires the expression of DAT to access intracellular compartments, we hypothesized that the absence of DAT in cerebellum hampers MPTP-induced toxicity. We conclude that cerebellum is endowed with efficient mechanisms to preserve nerve cell lipid homeostasis, which greatly maintain the stability of membrane microdomains involved in synaptic transmission, signal transduction, and intercellular communication, which together may participate in the compensatory role of the cerebellum in PD symptomatology.

11.
Epigenetics ; 14(10): 939-948, 2019 10.
Article in English | MEDLINE | ID: mdl-31144573

ABSTRACT

Epigenetic mechanisms generate plastic phenotypes that can become locally adapted across environments. Disentangling genomic from epigenomic variation is challenging in sexual species due to genetic variation among individuals, but it is easier in self-fertilizing species. We analysed DNA methylation patterns of two highly inbred strains of a naturally self-fertilizing fish reared in two contrasting environments to investigate the obligatory (genotype-dependent), facilitated (partially depend on the genotype) or pure (genotype-independent) nature of the epigenetic variation. We found higher methylation differentiation between genotypes than between environments. Most methylation differences between environments common to both strains followed a pattern where the two genotypes (inbred lines) responded to the same environmental context with contrasting DNA methylation levels (facilitated epialleles). Our findings suggest that, at least in part, DNA methylation could depend on the dynamic interaction between the genotype and the environment, which could explain the plasticity of epigenetically mediated phenotypes.


Subject(s)
DNA Methylation , Fishes/genetics , Animals , Brain/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Plant , Inbreeding , Principal Component Analysis
12.
Front Neurosci ; 13: 382, 2019.
Article in English | MEDLINE | ID: mdl-31068782

ABSTRACT

The aggregation of α-synuclein (α-syn) is a major factor behind the onset of Parkinson's disease (PD). Sublocalization of this protein may be relevant for the formation of multimeric α-syn oligomeric configurations, insoluble aggregates that form Lewy bodies in PD brains. Processing of this protein aggregation is regulated by associations with distinct lipid classes. For instance, instability of lipid raft (LR) microdomains, membrane regions with a particular lipid composition, is an early event in the development of PD. However, the relevance of membrane microdomains in the regulation and trafficking of the distinct α-syn configurations associated with PD remains unexplored. In this study, using 6- and 14-month-old healthy and MPTP-treated animals as a model of PD, we have investigated the putative molecular alterations of raft membrane microstructures, and their impact on α-syn dynamics and conformation. A comparison of lipid analyses of LR microstructures and non-raft (NR) fractions showed alterations in gangliosides, cholesterol, polyunsaturated fatty acids (PUFA) and phospholipids in the midbrain and cortex of aged and MPTP-treated mice. In particular, the increase of PUFA and phosphatidylserine (PS) during aging correlated with α-syn multimeric formation in NR. In these aggregates, α-syn was phosphorylated in pSer129, the most abundant post-transductional modification of α-syn promoting toxic aggregation. Interestingly, similar variations in PUFA and PS content correlating with α-syn insoluble accumulation were also detected in membrane microstructures from the human cortex of incidental Parkinson Disease (iPD) and PD, as compared to healthy controls. Furthermore, structural changes in membrane lipid microenvironments may induce rearrangements in raft-interacting proteins involved in other neuropathologies. Therefore, we also investigated the dynamic of other protein markers involved in cognition and memory impairment such as metabotropic glutamate receptor 5 (mGluR5), ionotropic NMDA receptor (NMDAR2B), prion protein (PrPc) and amyloid precursor protein (APP), whose activity depends on membrane lipid organization. We observed a decline of these protein markers in LR fractions with the progression of aging and pathology. Overall, our findings demonstrate that lipid alterations in membranous compartments promoted by brain aging and PD-like injury may have an effect on α-syn aggregation and segregation in abnormal multimeric structures.

13.
Epigenetics ; 13(12): 1191-1207, 2018.
Article in English | MEDLINE | ID: mdl-30526303

ABSTRACT

Stress experienced during early life may have lasting effects on the immune system, with impacts on health and disease dependent on the nature and duration of the stressor. The epigenome is especially sensitive to environmental stimuli during early life and represents a potential mechanism through which stress may cause long-lasting health effects. However, the extent to which the epigenome responds differently to chronic vs acute stressors is unclear, especially for non-mammalian species. We examined the effects of acute stress (cold-shock during embryogenesis) and chronic stress (absence of tank enrichment during larval-stage) on global gene expression (using RNA-seq) and DNA methylation (using RRBS) in the gills of Atlantic salmon (Salmo salar) four months after hatching. Chronic stress induced pronounced transcriptional differences, while acute stress caused few lasting transcriptional effects. However, both acute and chronic stress caused lasting and contrasting changes in the methylome. Crucially, we found that acute stress enhanced transcriptional immune response to a pathogenic challenge (bacterial lipopolysaccharide, LPS), while chronic stress suppressed it. We identified stress-induced changes in promoter and gene-body methylation that were associated with altered expression for a small proportion of immune-related genes, and evidence of wider epigenetic regulation within signalling pathways involved in immune response. Our results suggest that stress can affect immuno-competence through epigenetic mechanisms, and highlight the markedly different effects of chronic larval and acute embryonic stress. This knowledge could be used to harness the stimulatory effects of acute stress on immunity, paving the way for improved stress and disease management through epigenetic conditioning.


Subject(s)
Epigenesis, Genetic , Salmo salar/genetics , Stress, Physiological , Transcriptome , Animals , DNA Methylation , Immunity/genetics , Salmo salar/immunology , Salmo salar/physiology
14.
Curr Alzheimer Res ; 13(9): 973-84, 2016.
Article in English | MEDLINE | ID: mdl-26971937

ABSTRACT

Lipid rafts are membrane microdomains particularly enriched in cholesterol, sphingolipids and saturated fatty acids. These microstructures play a key role in a plethora of mechanisms involved in cell signaling, synapsis, cell-cell communication and cell survival. In the last years, increasing evidence indicate that lipid rafts may be altered in age-related neuropathologies, such as Alzheimer's disease and Parkinson disease even at asymptomatic stages. In particular, important changes in raft lipid composition are observed with the progression of these diseases, then inducing alterations in their physicochemical properties. Furthermore, these phenomena contribute to neuropathological events related to amyloidogenesis, aberrant protein aggregation and toxic cell signalling. In this review, we discuss some relevant data on the age-related molecular changes occurring in lipid rafts since the first stages of these neurodegenerative diseases. Further characterization of specific parameters associated with alterations of these microdomains may provide potential tools of diagnosis and prediction of these neuropathologies.


Subject(s)
Aging/metabolism , Membrane Microdomains/metabolism , Neurodegenerative Diseases/metabolism , Aging/pathology , Animals , Disease Progression , Humans , Membrane Microdomains/pathology , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL