Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
mSystems ; 3(6)2018.
Article in English | MEDLINE | ID: mdl-30574557

ABSTRACT

Penicillin (PEN) is a low-cost option for anthrax treatment, but naturally occurring resistance has been reported. ß-Lactamase expression (bla1, bla2) in Bacillus anthracis is regulated by a sigma factor (SigP) and its cognate anti-sigma factor (RsiP). Mutations leading to truncation of RsiP were previously described as a basis for PEN resistance. Here, we analyze whole-genome sequencing (WGS) data and compare the chromosomal sigP-bla1 regions from 374 B. anthracis strains to determine the frequency of mutations, identify mutations associated with PEN resistance, and evaluate the usefulness of WGS for predicting PEN resistance. Few (3.5%) strains contained at least 1 of 11 different mutations in sigP, rsiP, or bla1. Nine of these mutations have not been previously associated with PEN resistance. Four strains showed PEN resistance (PEN-R) by conventional broth microdilution, including 1 strain with a novel frameshift in rsiP. One strain that carries the same rsiP frameshift mutation as that found previously in a PEN-R strain showed a PEN-susceptible (PEN-S) phenotype and exhibited decreased bla1 and bla2 transcription. An unexpectedly small colony size, a reduced growth rate, and undetectable ß-lactamase activity levels (culture supernatant and cell lysate) were observed in this PEN-S strain. Sequence analysis revealed mutations in genes associated with growth defects that may contribute to this phenotype. While B. anthracis rsiP mutations cannot be exclusively used to predict resistance, four of the five strains with rsiP mutations were PEN-R. Therefore, the B. anthracis sigP-bla1 region is a useful locus for WGS-based PEN resistance prediction, but phenotypic testing remains essential. IMPORTANCE Determination of antimicrobial susceptibility of B. anthracis is essential for the appropriate distribution of antimicrobial agents for postexposure prophylaxis (PEP) and treatment of anthrax. Analysis of WGS data allows for the rapid detection of mutations in antimicrobial resistance (AMR) genes in an isolate, but the presence of a mutation in an AMR gene does not always accurately predict resistance. As mutations in the anti-sigma factor RsiP have been previously associated with high-level penicillin resistance in a limited number of strains, we investigated WGS assemblies from 374 strains to determine the frequency of mutations and performed functional antimicrobial susceptibility testing. Of the five strains that contained mutations in rsiP, only four were PEN-R by functional antimicrobial susceptibility testing. We conclude that while sequence analysis of this region is useful for AMR prediction in B. anthracis, genetic analysis should not be used exclusively and phenotypic susceptibility testing remains essential.

2.
Appl Environ Microbiol ; 81(2): 688-98, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25398857

ABSTRACT

Multilocus variable-number tandem-repeat analysis (MLVA) is efficient for routine typing and for investigating the genetic structures of natural microbial populations. Two distinct pathovars of Xanthomonas oryzae can cause significant crop losses in tropical and temperate rice-growing countries. Bacterial leaf streak is caused by X. oryzae pv. oryzicola, and bacterial leaf blight is caused by X. oryzae pv. oryzae. For the latter, two genetic lineages have been described in the literature. We developed a universal MLVA typing tool both for the identification of the three X. oryzae genetic lineages and for epidemiological analyses. Sixteen candidate variable-number tandem-repeat (VNTR) loci were selected according to their presence and polymorphism in 10 draft or complete genome sequences of the three X. oryzae lineages and by VNTR sequencing of a subset of loci of interest in 20 strains per lineage. The MLVA-16 scheme was then applied to 338 strains of X. oryzae representing different pathovars and geographical locations. Linkage disequilibrium between MLVA loci was calculated by index association on different scales, and the 16 loci showed linear Mantel correlation with MLSA data on 56 X. oryzae strains, suggesting that they provide a good phylogenetic signal. Furthermore, analyses of sets of strains for different lineages indicated the possibility of using the scheme for deeper epidemiological investigation on small spatial scales.


Subject(s)
Minisatellite Repeats , Molecular Typing , Oryza/microbiology , Plant Diseases/microbiology , Xanthomonas/classification , Xanthomonas/genetics , Epidemiological Monitoring , Molecular Epidemiology/methods
3.
mBio ; 5(3): e01193-14, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24895307

ABSTRACT

UNLABELLED: Microbial activities in soils, such as (incomplete) denitrification, represent major sources of nitrous oxide (N2O), a potent greenhouse gas. The key enzyme for mitigating N2O emissions is NosZ, which catalyzes N2O reduction to N2. We recently described "atypical" functional NosZ proteins encoded by both denitrifiers and nondenitrifiers, which were missed in previous environmental surveys (R. A. Sanford et al., Proc. Natl. Acad. Sci. U. S. A. 109:19709-19714, 2012, doi:10.1073/pnas.1211238109). Here, we analyzed the abundance and diversity of both nosZ types in whole-genome shotgun metagenomes from sandy and silty loam agricultural soils that typify the U.S. Midwest corn belt. First, different search algorithms and parameters for detecting nosZ metagenomic reads were evaluated based on in silico-generated (mock) metagenomes. Using the derived cutoffs, 71 distinct alleles (95% amino acid identity level) encoding typical or atypical NosZ proteins were detected in both soil types. Remarkably, more than 70% of the total nosZ reads in both soils were classified as atypical, emphasizing that prior surveys underestimated nosZ abundance. Approximately 15% of the total nosZ reads were taxonomically related to Anaeromyxobacter, which was the most abundant genus encoding atypical NosZ-type proteins in both soil types. Further analyses revealed that atypical nosZ genes outnumbered typical nosZ genes in most publicly available soil metagenomes, underscoring their potential role in mediating N2O consumption in soils. Therefore, this study provides a bioinformatics strategy to reliably detect target genes in complex short-read metagenomes and suggests that the analysis of both typical and atypical nosZ sequences is required to understand and predict N2O flux in soils. IMPORTANCE: Nitrous oxide (N2O) is a potent greenhouse gas with ozone layer destruction potential. Microbial activities control both the production and the consumption of N2O, i.e., its conversion to innocuous dinitrogen gas (N2). Until recently, consumption of N2O was attributed to bacteria encoding "typical" nitrous oxide reductase (NosZ). However, recent phylogenetic and physiological studies have shown that previously uncharacterized, functional, "atypical" NosZ proteins are encoded in genomes of diverse bacterial groups. The present study revealed that atypical nosZ genes outnumbered their typical counterparts, highlighting their potential role in N2O consumption in soils and possibly other environments. These findings advance our understanding of the diversity of microbes and functional genes involved in the nitrogen cycle and provide the means (e.g., gene sequences) to study N2O fluxes to the atmosphere and associated climate change.


Subject(s)
Metagenome , Oxidoreductases/genetics , Soil Microbiology , Soil/chemistry , Algorithms , Computational Biology/methods , Nitrogen Cycle , Nitrous Oxide , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...