Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Metab ; 6(2): 359-377, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38409323

ABSTRACT

High protein intake is common in western societies and is often promoted as part of a healthy lifestyle; however, amino-acid-mediated mammalian target of rapamycin (mTOR) signalling in macrophages has been implicated in the pathogenesis of ischaemic cardiovascular disease. In a series of clinical studies on male and female participants ( NCT03946774 and NCT03994367 ) that involved graded amounts of protein ingestion together with detailed plasma amino acid analysis and human monocyte/macrophage experiments, we identify leucine as the key activator of mTOR signalling in macrophages. We describe a threshold effect of high protein intake and circulating leucine on monocytes/macrophages wherein only protein in excess of ∼25 g per meal induces mTOR activation and functional effects. By designing specific diets modified in protein and leucine content representative of the intake in the general population, we confirm this threshold effect in mouse models and find ingestion of protein in excess of ∼22% of dietary energy requirements drives atherosclerosis in male mice. These data demonstrate a mechanistic basis for the adverse impact of excessive dietary protein on cardiovascular risk.


Subject(s)
Cardiovascular Diseases , Humans , Male , Female , Mice , Animals , Leucine/metabolism , Leucine/pharmacology , Risk Factors , TOR Serine-Threonine Kinases/metabolism , Macrophages/metabolism , Heart Disease Risk Factors , Mammals/metabolism
2.
Circ Res ; 133(3): 200-219, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37350264

ABSTRACT

BACKGROUND: The mTOR (mechanistic target of rapamycin) pathway is a complex signaling cascade that regulates cellular growth, proliferation, metabolism, and survival. Although activation of mTOR signaling has been linked to atherosclerosis, its direct role in lesion progression and in plaque macrophages remains poorly understood. We previously demonstrated that mTORC1 (mTOR complex 1) activation promotes atherogenesis through inhibition of autophagy and increased apoptosis in macrophages. METHODS: Using macrophage-specific Rictor- and mTOR-deficient mice, we now dissect the distinct functions of mTORC2 pathways in atherogenesis. RESULTS: In contrast to the atheroprotective effect seen with blockade of macrophage mTORC1, macrophage-specific mTORC2-deficient mice exhibit an atherogenic phenotype, with larger, more complex lesions and increased cell death. In cultured macrophages, we show that mTORC2 signaling inhibits the FoxO1 (forkhead box protein O1) transcription factor, leading to suppression of proinflammatory pathways, especially the inflammasome/IL (interleukin)-1ß response, a key mediator of vascular inflammation and atherosclerosis. In addition, administration of FoxO1 inhibitors efficiently rescued the proinflammatory response caused by mTORC2 deficiency both in vitro and in vivo. Interestingly, collective deletion of macrophage mTOR, which ablates mTORC1- and mTORC2-dependent pathways, leads to minimal change in plaque size or complexity, reflecting the balanced yet opposing roles of these signaling arms. CONCLUSIONS: Our data provide the first mechanistic details of macrophage mTOR signaling in atherosclerosis and suggest that therapeutic measures aimed at modulating mTOR need to account for its dichotomous functions.


Subject(s)
Atherosclerosis , TOR Serine-Threonine Kinases , Mice , Animals , Mechanistic Target of Rapamycin Complex 2 , TOR Serine-Threonine Kinases/metabolism , Macrophages/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Transcription Factors/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism
4.
Methods Mol Biol ; 2662: 183-192, 2023.
Article in English | MEDLINE | ID: mdl-37076681

ABSTRACT

In the research setting, white adipose tissue (WAT) transplantation, also known as fat transplantation, is often used to understand the physiological function of adipocytes or associated stromal vascular cells such as macrophages in the context of local and systemic metabolism. The mouse is the most common animal model used where WAT from a donor is transferred either to a subcutaneous site of the same organism or to a subcutaneous region of a recipient. Here, we describe in detail the procedure for heterologous fat transplantation, and, given the need for survival surgery, peri- and postoperative care and subsequent histological confirmation of fat grafts will also be discussed.


Subject(s)
Adipocytes , Adipose Tissue, White , Mice , Animals , Adipose Tissue, White/metabolism , Adipocytes/metabolism , Models, Animal , Adipose Tissue/blood supply
5.
Autophagy ; 19(3): 886-903, 2023 03.
Article in English | MEDLINE | ID: mdl-35982578

ABSTRACT

Dysfunction in the macrophage lysosomal system including reduced acidity and diminished degradative capacity is a hallmark of atherosclerosis, leading to blunted clearance of excess cellular debris and lipids in plaques and contributing to lesion progression. Devising strategies to rescue this macrophage lysosomal dysfunction is a novel therapeutic measure. Nanoparticles have emerged as an effective platform to both target specific tissues and serve as drug delivery vehicles. In most cases, administered nanoparticles are taken up non-selectively by the mononuclear phagocyte system including monocytes/macrophages leading to the undesirable degradation of cargo in lysosomes. We took advantage of this default route to target macrophage lysosomes to rectify their acidity in disease states such as atherosclerosis. Herein, we develop and test two commonly used acidic nanoparticles, poly-lactide-co-glycolic acid (PLGA) and polylactic acid (PLA), both in vitro and in vivo. Our results in cultured macrophages indicate that the PLGA-based nanoparticles are the most effective at trafficking to and enhancing acidification of lysosomes. PLGA nanoparticles also provide functional benefits including enhanced lysosomal degradation, promotion of macroautophagy/autophagy and protein aggregate removal, and reduced apoptosis and inflammasome activation. We demonstrate the utility of this system in vivo, showing nanoparticle accumulation in, and lysosomal acidification of, macrophages in atherosclerotic plaques. Long-term administration of PLGA nanoparticles results in significant reductions in surrogates of plaque complexity with reduced apoptosis, necrotic core formation, and cytotoxic protein aggregates and increased fibrous cap formation. Taken together, our data support the use of acidic nanoparticles to rescue macrophage lysosomal dysfunction in the treatment of atherosclerosis.Abbreviations: BCA: brachiocephalic arteries; FACS: fluorescence activated cell sorting; FITC: fluorescein-5-isothiocyanatel; IL1B: interleukin 1 beta; LAMP: lysosomal associated membrane protein; LIPA/LAL: lipase A, lysosomal acid type; LSDs: lysosomal storage disorders; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFI: mean fluorescence intensity; MPS: mononuclear phagocyte system; PEGHDE: polyethylene glycol hexadecyl ether; PLA: polylactic acid; PLGA: poly-lactide-co-glycolic acid; SQSTM1/p62: sequestosome 1.


Subject(s)
Atherosclerosis , Nanoparticles , Plaque, Atherosclerotic , Humans , Autophagy , Atherosclerosis/pathology , Macrophages/metabolism , Plaque, Atherosclerotic/pathology , Lysosomes/metabolism , Acids/metabolism , Polyesters/metabolism
6.
STAR Protoc ; 3(4): 101665, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36094885

ABSTRACT

Previous studies have demonstrated that a high-protein diet leads to increased atherosclerosis in mice, and that this adverse effect is caused by activation of macrophage mTORC1 signaling. Here, we provide a detailed protocol for the evaluation of diet-induced mTORC1 signaling in plaque macrophages in atherosclerosis-prone apolipoprotein E (ApoE) knockout (KO) mice. This protocol includes flow cytometry and immunofluorescence analysis of atherosclerotic macrophages that can be used to study the atherogenic potential of a variety of mTORC1 modulators. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2020).


Subject(s)
Atherosclerosis , Mice , Animals , Flow Cytometry , Macrophages , Mice, Knockout , Fluorescent Antibody Technique
8.
Autophagy ; 17(11): 3740-3752, 2021 11.
Article in English | MEDLINE | ID: mdl-33706671

ABSTRACT

The autophagy-lysosome system is an important cellular degradation pathway that recycles dysfunctional organelles and cytotoxic protein aggregates. A decline in this system is pathogenic in many human diseases including neurodegenerative disorders, fatty liver disease, and atherosclerosis. Thus there is intense interest in discovering therapeutics aimed at stimulating the autophagy-lysosome system. Trehalose is a natural disaccharide composed of two glucose molecules linked by a ɑ-1,1-glycosidic bond with the unique ability to induce cellular macroautophagy/autophagy and with reported efficacy on mitigating several diseases where autophagy is dysfunctional. Interestingly, the mechanism by which trehalose induces autophagy is unknown. One suggested mechanism is its ability to activate TFEB (transcription factor EB), the master transcriptional regulator of autophagy-lysosomal biogenesis. Here we describe a potential mechanism involving direct trehalose action on the lysosome. We find trehalose is endocytically taken up by cells and accumulates within the endolysosomal system. This leads to a low-grade lysosomal stress with mild elevation of lysosomal pH, which acts as a potent stimulus for TFEB activation and nuclear translocation. This process appears to involve inactivation of MTORC1, a known negative regulator of TFEB which is sensitive to perturbations in lysosomal pH. Taken together, our data show the trehalose can act as a weak inhibitor of the lysosome which serves as a trigger for TFEB activation. Our work not only sheds light on trehalose action but suggests that mild alternation of lysosomal pH can be a novel method of inducing the autophagy-lysosome system.Abbreviations: ASO: antisense oligonucleotide; AU: arbitrary units; BMDM: bone marrow-derived macrophages; CLFs: crude lysosomal fractions; CTSD: cathepsin D; LAMP: lysosomal associated membrane protein; LIPA/LAL: lipase A, lysosomal acid type; MAP1LC3: microtubule-associated protein 1 light chain 3; MFI: mean fluorescence intensity; MTORC1: mechanistic target of rapamycin kinase complex 1; pMAC: peritoneal macrophages; SLC2A8/GLUT8: solute carrier family 2, (facilitated glucose transporter), member 8; TFEB: transcription factor EB; TMR: tetramethylrhodamine; TREH: trehalase.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Lysosomes/metabolism , Trehalose/metabolism , Animals , Autophagy/physiology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/physiology , Blotting, Western , Endocytosis , Fluorescent Antibody Technique , Gas Chromatography-Mass Spectrometry , Lysosomes/physiology , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/physiology , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Trehalose/physiology
10.
Expert Opin Ther Targets ; 24(9): 825-844, 2020 09.
Article in English | MEDLINE | ID: mdl-32757967

ABSTRACT

INTRODUCTION: Inflammasomes are central to atherosclerotic vascular dysfunction with regulatory effects on inflammation, immune modulation, and lipid metabolism. The NLRP3 inflammasome is a critical catalyst for atherogenesis thus highlighting its importance in understanding the pathophysiology of atherosclerosis and for the identification of novel therapeutic targets and biomarkers for the treatment of cardiovascular disease. AREAS COVERED: This review includes an overview of macrophage lipid metabolism and the role of NLRP3 inflammasome activity in cardiovascular inflammation and atherosclerosis. We highlight key activators, signal transducers and major regulatory components that are being considered as putative therapeutic targets for inhibition of NLRP3-mediated cardiovascular inflammation and atherosclerosis. EXPERT OPINION: NLRP3 inflammasome activity lies at the nexus between inflammation and cholesterol metabolism; it offers unique opportunities for understanding atherosclerotic pathophysiology and identifying novel modes of treatment. As such, a host of NLRP3 signaling cascade components have been identified as putative targets for drug development. We catalog these current discoveries in therapeutic targeting of the NLRP3 inflammasome and, utilizing the CANTOS trial as the translational (bench-to-bedside) archetype, we examine the complexities, challenges, and ultimate goals facing the field of atherosclerosis research.


Subject(s)
Atherosclerosis/therapy , Inflammation/therapy , Molecular Targeted Therapy , Animals , Atherosclerosis/physiopathology , Biomarkers/metabolism , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/therapy , Humans , Inflammasomes/metabolism , Inflammation/pathology , Lipid Metabolism , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
11.
Nat Metab ; 2(1): 110-125, 2020 01.
Article in English | MEDLINE | ID: mdl-32128508

ABSTRACT

High protein diets are commonly utilized for weight loss, yet have been reported to raise cardiovascular risk. The mechanisms underlying this risk are unknown. Here, we show that dietary protein drives atherosclerosis and lesion complexity. Protein ingestion acutely elevates amino acid levels in blood and atherosclerotic plaques, stimulating macrophage mTOR signaling. This is causal in plaque progression as the effects of dietary protein are abrogated in macrophage-specific Raptor-null mice. Mechanistically, we find amino acids exacerbate macrophage apoptosis induced by atherogenic lipids, a process that involves mTORC1-dependent inhibition of mitophagy, accumulation of dysfunctional mitochondria, and mitochondrial apoptosis. Using macrophage-specific mTORC1- and autophagy-deficient mice we confirm this amino acid-mTORC1-autophagy signaling axis in vivo. Our data provide the first insights into the deleterious impact of excessive protein ingestion on macrophages and atherosclerotic progression. Incorporation of these concepts in clinical studies will be important to define the vascular effects of protein-based weight loss regimens.


Subject(s)
Cardiovascular Diseases/metabolism , Diet, High-Protein , Macrophages/metabolism , Mitophagy/physiology , TOR Serine-Threonine Kinases/metabolism , Animals , Heart Disease Risk Factors , Macrophage Activation , Mice , Plaque, Atherosclerotic/metabolism
12.
Antioxid Redox Signal ; 31(6): 458-471, 2019 08 20.
Article in English | MEDLINE | ID: mdl-30588824

ABSTRACT

Significance: p62/SQSTM1 is a multifunctional scaffolding protein involved in the regulation of various signaling pathways as well as autophagy. In particular, p62/SQSTM1 serves as an essential adaptor to identify and deliver specific organelles and protein aggregates to autophagosomes for degradation, a process known as selective autophagy. Critical Issues: With the emergence of autophagy as a critical process in cellular metabolism and the development of cardiometabolic diseases, it is increasingly important to understand p62's role in the integration of signaling and autophagic pathways. Recent Advances: This review first discusses the features that make p62/SQSTM1 an ideal chaperone in integrating signaling pathways with autophagy and details the current understanding of its diverse roles in selective autophagy processes. Distinct and overlapping roles of other chaperones with similar functions are then discussed in the context of p62/SQSTM1. Finally, the recent literature focusing on p62 and selective autophagy in metabolism and the spectrum of cardiometabolic diseases including atherosclerosis, fatty liver disease, and obesity is evaluated. Future Directions: A comprehensive understanding of the nuanced roles p62/SQSTM1 plays in mediating distinct autophagy pathways would provide new insights into the mechanisms of this critical degradative pathway. This will, in turn, facilitate our understanding of cardiovascular and cardiometabolic disease pathology and the development of novel autophagy-modulating therapeutic strategies.


Subject(s)
Autophagy , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Sequestosome-1 Protein/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...