Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Methods Mol Biol ; 1420: 13-31, 2016.
Article in English | MEDLINE | ID: mdl-27259728

ABSTRACT

RNA analysis is a valuable tool for the identification of the forensically relevant body fluids, saliva, blood, menstrual blood, cervicovaginal fluid, and semen. Multiple human mRNA and bacterial RNA markers have been identified for each of these body fluids. RNA and DNA can be coextracted from the same portion of a sample and RNA markers for different body fluids can be multiplexed in a single PCR, thereby maximizing the number of analyses that can be performed with limited sample material.


Subject(s)
Body Fluids , Forensic Genetics/methods , RNA, Messenger/genetics , Sequence Analysis, RNA/methods , DNA Fingerprinting/methods , Humans , Polymerase Chain Reaction/methods
2.
Methods Mol Biol ; 1420: 131-4, 2016.
Article in English | MEDLINE | ID: mdl-27259736

ABSTRACT

Forensic laboratories routinely perform STR analyses using commercially available STR kits. Very low levels of DNA are extracted from many forensic samples. In these samples, the amount of DNA that can be placed in a PCR is below the optimal DNA range for the commercial kits, leading to weak profiles and allelic dropout. STR profiles generated from poor quality samples can be improved by purification of the PCR product prior to capillary electrophoresis.


Subject(s)
DNA Fingerprinting/methods , Microsatellite Repeats/genetics , Polymerase Chain Reaction/methods , DNA Fingerprinting/standards , Electrophoresis, Capillary , Humans
3.
Int J Legal Med ; 127(4): 707-21, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23254458

ABSTRACT

Messenger RNA (mRNA) expression varies among cell types; therefore, analyses for the presence of particular mRNAs can be used to identify biological fluids in forensic samples. For this work, several novel markers were characterized for saliva, cervicovaginal fluid (CVF), blood, and menstrual blood (MB). The new markers were used in combination with previously described markers to develop four multiplex polymerase chain reaction assays. These multiplexes incorporate two housekeeping and a minimum of five markers for each of the following forensically relevant body fluids: semen, saliva, CVF, blood, and MB. A large number of samples (>200) were analyzed to determine specificity of each marker. The majority of the markers were detected at low frequencies in non-target body fluids. Because markers were not specific to their respective target body fluids, a scoring system was developed to minimize the chances of misidentification of a sample due to marker expression in a non-target body fluid. Each marker was given a numerical value related to its "correct" (target body fluid) versus "incorrect" (non-target body fluid) expression in samples of known origin. For each of the five body fluids, the marker values of those mRNA markers that were present in a sample were added to produce a body fluid score. Threshold scores were then determined for the identification of each body fluid. Although this study highlights the complexity of body fluid identification, particularly in differentiating blood and MB, the use of threshold scores allowed for reliable body fluid identification in the samples tested.


Subject(s)
Blood Chemical Analysis , Cervix Mucus/chemistry , DNA Fingerprinting/methods , Genetic Markers , RNA, Messenger/metabolism , Saliva/chemistry , Semen/chemistry , Electrophoresis , Female , Humans , Male , Menstruation , Multiplex Polymerase Chain Reaction , Reverse Transcription
4.
Int J Primatol ; 32(2): 288-307, 2011 Apr.
Article in English | MEDLINE | ID: mdl-23950618

ABSTRACT

It is now well established that the human immunodeficiency viruses, HIV-1 and HIV-2, are the results of cross-species transmissions of simian immunodeficiency viruses (SIV) naturally infecting nonhuman primates in sub-Saharan Africa. SIVs are found in many African primates, and humans continue to be exposed to these viruses by hunting and handling primate bushmeat. Sooty mangabeys (Cercocebus atys) and western red colobus (Piliocolobus badius badius) are infected with SIV at a high rate in the Taï Forest, Côte d'Ivoire. We investigated the SIV infection and prevalence in 6 other monkey species living in the Taï Forest using noninvasive methods. We collected 127 fecal samples from 2 colobus species (Colobus polykomos and Procolobus verus) and 4 guenon species (C. diana, C. campbelli, C. petaurista, and C. nictitans). We tested these samples for HIV cross-reactive antibodies and performed reverse transcriptase-polymerase chain reactions (RT-PCR) targeting the gag, pol, and env regions of the SIV genome. We screened 16 human microsatellites for use in individual discrimination and identified 4-6 informative markers per species. Serological analysis of 112 samples yielded negative (n=86) or uninterpretable (n=26) results. PCR analysis on 74 samples confirmed the negative results. These results may reflect either the limited number of individuals sampled or a low prevalence of infection. Further research is needed to improve the sensitivity of noninvasive methods for SIV detection.

5.
Folia Primatol (Basel) ; 80(2): 63-9, 2009.
Article in English | MEDLINE | ID: mdl-19352089

ABSTRACT

Many genetic studies on catarrhines use microsatellite markers that were isolated from human DNA. A large number of these markers have been characterized in the great apes, macaques and baboons. However, there are few or no markers available for other members of this group. In this study, an extensive literature search was performed to find microsatellite markers that had been successfully amplified across a range of catarrhine species. These conserved loci can provide a valuable starting point for characterizing loci in other catarrhines. Finally, microsatellite markers were tested in a range of species that are not well represented in the literature.


Subject(s)
Catarrhini/genetics , Genetic Markers/genetics , Microsatellite Repeats/genetics , Animals , Base Sequence , Genotype , Molecular Sequence Data , Sequence Analysis, DNA
6.
Forensic Sci Int Genet ; 3(2): 128-37, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19215883

ABSTRACT

Obtaining genetic profiles from samples containing minimal amounts of DNA can be difficult. In forensic science, the vast majority of genetic profiles are generated using commercial kits that have been optimized for the amplification of a specific range of DNA concentrations. DNA extracted from many forensic samples falls below the kit manufacturers' specified concentrations either because there is not enough total DNA in the extract or the extract is so dilute that not enough volume of the extract can be added to the PCR. In order to develop a method to maximize SGM Plus and Identifiler profiling success from samples with sub-optimal quantities of DNA, thermocycle numbers and/or the amount of PCR product injected during capillary electrophoresis (termed Enhancement) of PCR products were increased. Increasing the number of thermocycles from 28 to 30 and/or two phases of Enhancement of both 28 and 30 thermocycle PCR products resulted in an increased number of scorable peaks. As expected with low template amounts of DNA, many of the samples showed allelic drop-out, heterozygote imbalances and sporadic, large stutter peaks. Enhancement decreased the amount of allelic drop-out observed and did not affect stutter peak or heterozygous peak height ratios. Although the PCR reactions from these samples should always be replicated before a reportable consensus profile is reached, Phase 1 and 2 Enhancement can maximize the profiling success from each reaction. Finally, a flexible, staged approach using 28 or 30 thermocycle PCR in combination with the Enhancement techniques described here is proposed for processing samples with sub-optimal quantities of DNA.


Subject(s)
DNA/analysis , Gene Expression Profiling , Alleles , DNA/genetics , DNA Fingerprinting , Electrophoresis, Capillary , Gene Dosage , Humans , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction , Templates, Genetic
7.
Infect Genet Evol ; 8(1): 1-14, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17916449

ABSTRACT

Numerous African primates are infected with simian immunodeficiency viruses (SIVs). It is now well established that the clade of SIVs infecting west-central African chimpanzees (Pan troglodytes troglodytes) and western gorillas (Gorilla gorilla gorilla) represent the progenitors of human immunodeficiency virus type 1 (HIV-1), whereas HIV-2 results from different cross-species transmissions of SIVsmm from sooty mangabeys (Cercocebus atys atys). We present here the first molecular epidemiological survey of simian immunodeficiency virus (SIVwrc) in wild-living western red colobus monkeys (Piliocolobus badius badius) which are frequently hunted by the human population and represent a favourite prey of western chimpanzees (Pan troglodytes verus). We collected faecal samples (n=88) and we assessed individual discrimination by microsatellite analyses and visual observation. We tested the inferred 53 adult individuals belonging to two neighbouring habituated groups for presence of SIVwrc infection by viral RNA (vRNA) detection. We amplified viral polymerase (pol) (650 bp) and/or envelope (env) (570 bp) sequences in 14 individuals, resulting in a minimal prevalence of 26% among the individuals sampled, possibly reaching 50% when considering the relatively low sensitivity of viral RNA detection in faecal samples. With a few exceptions, phylogenetic analysis of pol and env sequences revealed a low degree of intragroup genetic diversity and a general viral clustering related to the social group of origin. However, we found a higher intergroup diversity. Behavioural and demographic data collected previously from these communities indicate that red colobus monkeys live in promiscuous multi-male societies, where females leave their natal group at the sub-adult stage of their lives and where extra-group copulations or male immigration have been rarely observed. The phylogenetic data we obtained seem to reflect these behavioural characteristics. Overall, our results indicate that wild-living red colobus represent a substantial reservoir of SIVwrc. Moreover, because of their frequent association with other monkey species, the predation pressure exerted by chimpanzees (Pan troglodytes verus) and by poachers around and inside the park, simian to simian and simian to human SIVwrc cross-species transmission cannot be excluded.


Subject(s)
Colobus/virology , Ecosystem , Genetic Variation , Simian Immunodeficiency Virus/genetics , Trees , Animals , Animals, Wild/virology , Cote d'Ivoire , Feces/virology , Female , Male , Molecular Sequence Data , Phylogeny , Prevalence , RNA, Viral/genetics
8.
Folia Primatol (Basel) ; 77(3): 240-5, 2006.
Article in English | MEDLINE | ID: mdl-16612098

ABSTRACT

DNA profiling with microsatellite markers is a commonly used genetic method of studying the great apes. An efficient method of generating the genetic data is amplification of multiple microsatellites in a single PCR reaction. Here we describe a PCR multiplex in which 9 genetic markers can be amplified simultaneously, thereby saving time, expenses and DNA. This marker system can discriminate between all the great ape species except bonobos and chimpanzees. Furthermore, the cumulative probability of identity values were low for all 4 species tested.


Subject(s)
Hominidae/genetics , Microsatellite Repeats/genetics , Reagent Kits, Diagnostic , Animals , Sex Chromosomes
9.
PLoS Biol ; 2(6): e155, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15208713

ABSTRACT

Recent experiments using sperm typing have demonstrated that, in several regions of the human genome, recombination does not occur uniformly but instead is concentrated in "hotspots" of 1-2 kb. Moreover, the crossover asymmetry observed in a subset of these has led to the suggestion that hotspots may be short-lived on an evolutionary time scale. To test this possibility, we focused on a region known to contain a recombination hotspot in humans, TAP2, and asked whether chimpanzees, the closest living evolutionary relatives of humans, harbor a hotspot in a similar location. Specifically, we used a new statistical approach to estimate recombination rate variation from patterns of linkage disequilibrium in a sample of 24 western chimpanzees (Pan troglodytes verus). This method has been shown to produce reliable results on simulated data and on human data from the TAP2 region. Strikingly, however, it finds very little support for recombination rate variation at TAP2 in the western chimpanzee data. Moreover, simulations suggest that there should be stronger support if there were a hotspot similar to the one characterized in humans. Thus, it appears that the human TAP2 recombination hotspot is not shared by western chimpanzees. These findings demonstrate that fine-scale recombination rates can change between very closely related species and raise the possibility that rates differ among human populations, with important implications for linkage-disequilibrium based association studies.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Genetic Variation , Linkage Disequilibrium/genetics , Pan troglodytes/genetics , Recombination, Genetic/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 3 , Animals , Base Sequence , Computer Simulation , Evolution, Molecular , Haplotypes/genetics , Humans , Models, Genetic , Molecular Sequence Data , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA
10.
Am J Hum Genet ; 73(1): 74-85, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12789647

ABSTRACT

Mutations in TBX5, a T-box-containing transcription factor, cause cardiac and limb malformations in individuals with Holt-Oram syndrome (HOS). Mutations that result in haploinsufficiency of TBX5 are purported to cause cardiac and limb defects of similar severity, whereas missense mutations, depending on their location in the T box, are thought to cause either more severe heart or more severe limb abnormalities. These inferences are, however, based on the analysis of a relatively small number of independent cases of HOS. To better understand the relationship between mutations in TBX5 and the variable expressivity of HOS, we screened the coding and noncoding regions of TBX5 and SALL4 for mutations in 55 probands with HOS. Seventeen mutations, including six missense mutations in TBX5 and two mutations in SALL4, were found in 19 kindreds with HOS. Fewer than 50% of individuals with nonsense or frameshift mutations in TBX5 had heart and limb defects of similar severity, and only 2 of 20 individuals had heart or limb malformations of the severity predicted by the location of their mutations in the T box. These results suggest that neither the type of mutation in TBX5 nor the location of a mutation in the T box is predictive of the expressivity of malformations in individuals with HOS.


Subject(s)
Abnormalities, Multiple/genetics , T-Box Domain Proteins/genetics , Female , Genotype , Humans , Male , Pedigree , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL