Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Am J Hum Genet ; 110(5): 790-808, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37071997

ABSTRACT

SRSF1 (also known as ASF/SF2) is a non-small nuclear ribonucleoprotein (non-snRNP) that belongs to the arginine/serine (R/S) domain family. It recognizes and binds to mRNA, regulating both constitutive and alternative splicing. The complete loss of this proto-oncogene in mice is embryonically lethal. Through international data sharing, we identified 17 individuals (10 females and 7 males) with a neurodevelopmental disorder (NDD) with heterozygous germline SRSF1 variants, mostly de novo, including three frameshift variants, three nonsense variants, seven missense variants, and two microdeletions within region 17q22 encompassing SRSF1. Only in one family, the de novo origin could not be established. All individuals featured a recurrent phenotype including developmental delay and intellectual disability (DD/ID), hypotonia, neurobehavioral problems, with variable skeletal (66.7%) and cardiac (46%) anomalies. To investigate the functional consequences of SRSF1 variants, we performed in silico structural modeling, developed an in vivo splicing assay in Drosophila, and carried out episignature analysis in blood-derived DNA from affected individuals. We found that all loss-of-function and 5 out of 7 missense variants were pathogenic, leading to a loss of SRSF1 splicing activity in Drosophila, correlating with a detectable and specific DNA methylation episignature. In addition, our orthogonal in silico, in vivo, and epigenetics analyses enabled the separation of clearly pathogenic missense variants from those with uncertain significance. Overall, these results indicated that haploinsufficiency of SRSF1 is responsible for a syndromic NDD with ID due to a partial loss of SRSF1-mediated splicing activity.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Child , Female , Male , Developmental Disabilities/genetics , Developmental Disabilities/complications , Haploinsufficiency/genetics , Intellectual Disability/pathology , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Humans
2.
Am J Hum Genet ; 110(3): 499-515, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36724785

ABSTRACT

Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2). We present clinical, genomic, and functional data from 11 individuals in 9 unrelated families with bi-allelic variants in TTI1. All present with ID, and most with microcephaly, short stature, and a movement disorder. Functional studies performed in HEK293T cell lines and fibroblasts and lymphoblastoid cells derived from 4 unrelated individuals showed impairment of the TTT complex and of mTOR pathway activity which is improved by treatment with Rapamycin. Our data delineate a TTI1-related neurodevelopmental disorder and expand the group of disorders related to the TTT complex.


Subject(s)
Microcephaly , Movement Disorders , Neurodevelopmental Disorders , Humans , Intracellular Signaling Peptides and Proteins , HEK293 Cells , TOR Serine-Threonine Kinases
3.
J Clin Endocrinol Metab ; 108(7): 1696-1708, 2023 06 16.
Article in English | MEDLINE | ID: mdl-36633570

ABSTRACT

CONTEXT: Prader-Willi syndrome (PWS) is a rare genetic disorder characterized by endocrine and neuropsychiatric problems including hyperphagia, anxiousness, and distress. Intranasal carbetocin, an oxytocin analog, was investigated as a selective oxytocin replacement therapy. OBJECTIVE: To evaluate safety and efficacy of intranasal carbetocin in PWS. DESIGN: Randomized, double-blind, placebo-controlled phase 3 trial with long-term follow-up. SETTING: Twenty-four ambulatory clinics at academic medical centers. PARTICIPANTS: A total of 130 participants with PWS aged 7 to 18 years. INTERVENTIONS: Participants were randomized to 9.6 mg/dose carbetocin, 3.2 mg/dose carbetocin, or placebo 3 times daily during an 8-week placebo-controlled period (PCP). During a subsequent 56-week long-term follow-up period, placebo participants were randomly assigned to 9.6 mg or 3.2 mg carbetocin, with carbetocin participants continuing at their previous dose. MAIN OUTCOME MEASURES: Primary endpoints assessed change in hyperphagia (Hyperphagia Questionnaire for Clinical Trials [HQ-CT]) and obsessive-compulsive symptoms (Children's Yale-Brown Obsessive-Compulsive Scale [CY-BOCS]) during the PCP for 9.6 mg vs placebo, and the first secondary endpoints assessed these same outcomes for 3.2 mg vs placebo. Additional secondary endpoints included assessments of anxiousness and distress behaviors (PWS Anxiousness and Distress Behaviors Questionnaire [PADQ]) and clinical global impression of change (CGI-C). RESULTS: Because of onset of the COVID-19 pandemic, enrollment was stopped prematurely. The primary endpoints showed numeric improvements in both HQ-CT and CY-BOCS which were not statistically significant; however, the 3.2-mg arm showed nominally significant improvements in HQ-CT, PADQ, and CGI-C scores vs placebo. Improvements were sustained in the long-term follow-up period. The most common adverse event during the PCP was mild to moderate flushing. CONCLUSIONS: Carbetocin was well tolerated, and the 3.2-mg dose was associated with clinically meaningful improvements in hyperphagia and anxiousness and distress behaviors in participants with PWS. CLINICAL TRIALS REGISTRATION NUMBER: NCT03649477.


Subject(s)
COVID-19 , Prader-Willi Syndrome , Child , Humans , Prader-Willi Syndrome/drug therapy , Prader-Willi Syndrome/complications , Oxytocin , Pandemics , COVID-19/complications , Hyperphagia/drug therapy , Hyperphagia/complications , Anxiety/drug therapy , Anxiety/etiology
4.
J Med Genet ; 60(6): 547-556, 2023 06.
Article in English | MEDLINE | ID: mdl-36150828

ABSTRACT

BACKGROUND: Mosaicism for chromosomal structural abnormalities, other than marker or ring chromosomes, is rarely inherited. METHODS: We performed cytogenetics studies and breakpoint analyses on a family with transmission of mosaicism for a derivative chromosome 8 (der(8)), resulting from an unbalanced translocation between the long arms of chromosomes 8 and 21 over three generations. RESULTS: The proband and his maternal half-sister had mosaicism for a der(8) cell line leading to trisomy of the distal 21q, and both had Down syndrome phenotypic features. Mosaicism for a cell line with the der(8) and a normal cell line was also detected in a maternal half-cousin. The der(8) was inherited from the maternal grandmother who had four abnormal cell lines containing the der(8), in addition to a normal cell line. One maternal half-aunt had the der(8) and an isodicentric chromosome 21 (idic(21)). Sequencing studies revealed microhomologies at the junctures of the der(8) and idic(21) in the half-aunt, suggesting a replicative mechanism in the rearrangement formation. Furthermore, interstitial telomeric sequences (ITS) were identified in the juncture between chromosomes 8 and 21 in the der(8). CONCLUSION: Mosaicism in the proband, his half-sister and half-cousin resulting from loss of chromosome 21 material from the der(8) appears to be a postzygotic event due to the genomic instability of ITS and associated with selective growth advantage of normal cells. The reversion of the inherited der(8) to a normal chromosome 8 in this family resembles revertant mosaicism of point mutations. We propose that ITS could mediate recurring revertant mosaicism for some constitutional chromosomal structural abnormalities.


Subject(s)
Mosaicism , Ring Chromosomes , Humans , Chromosomes, Human, Pair 8/genetics , Karyotyping , In Situ Hybridization, Fluorescence , Chromosome Aberrations , Translocation, Genetic/genetics , Germ Cells
5.
Mol Genet Genomic Med ; 9(10): e1809, 2021 10.
Article in English | MEDLINE | ID: mdl-34519438

ABSTRACT

The phenotypic variability associated with pathogenic variants in Lysine Acetyltransferase 6B (KAT6B, a.k.a. MORF, MYST4) results in several interrelated syndromes including Say-Barber-Biesecker-Young-Simpson Syndrome and Genitopatellar Syndrome. Here we present 20 new cases representing 10 novel KAT6B variants. These patients exhibit a range of clinical phenotypes including intellectual disability, mobility and language difficulties, craniofacial dysmorphology, and skeletal anomalies. Given the range of features previously described for KAT6B-related syndromes, we have identified additional phenotypes including concern for keratoconus, sensitivity to light or noise, recurring infections, and fractures in greater numbers than previously reported. We surveyed clinicians to qualitatively assess the ways families engage with genetic counselors upon diagnosis. We found that 56% (10/18) of individuals receive diagnoses before the age of 2 years (median age = 1.96 years), making it challenging to address future complications with limited accessible information and vast phenotypic severity. We used CRISPR to introduce truncating variants into the KAT6B gene in model cell lines and performed chromatin accessibility and transcriptome sequencing to identify key dysregulated pathways. This study expands the clinical spectrum and addresses the challenges to management and genetic counseling for patients with KAT6B-related disorders.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Histone Acetyltransferases/genetics , Mutation , Phenotype , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Alleles , Blepharophimosis/diagnosis , Blepharophimosis/genetics , Cohort Studies , Congenital Hypothyroidism/diagnosis , Congenital Hypothyroidism/genetics , Craniofacial Abnormalities/diagnosis , Craniofacial Abnormalities/genetics , Facies , Genetic Counseling , Genetic Loci , Genotype , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Joint Instability/diagnosis , Joint Instability/genetics , Kidney/abnormalities , Male , Patella/abnormalities , Psychomotor Disorders/diagnosis , Psychomotor Disorders/genetics , Scrotum/abnormalities , Urogenital Abnormalities/diagnosis , Urogenital Abnormalities/genetics
6.
Ann Neurol ; 90(2): 274-284, 2021 08.
Article in English | MEDLINE | ID: mdl-34185323

ABSTRACT

OBJECTIVE: The MAST family of microtubule-associated serine-threonine kinases (STKs) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been conclusively associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus callosum. METHODS: Using exome sequencing, we identify MAST3 missense variants in individuals with epilepsy. We also assess the effect of these variants on the ability of MAST3 to phosphorylate the target gene product ARPP-16 in HEK293T cells. RESULTS: We identify de novo missense variants in the STK domain in 11 individuals, including 2 recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. In vitro analysis of HEK293T cells transfected with MAST3 cDNA carrying a subset of these patient-specific missense variants demonstrated variable but generally lower expression, with concomitant increased phosphorylation of the MAST3 target, ARPP-16, compared to wild-type. These findings suggest the patient-specific variants may confer MAST3 gain-of-function. Moreover, single-nuclei RNA sequencing and immunohistochemistry shows that MAST3 expression is restricted to excitatory neurons in the cortex late in prenatal development and postnatally. INTERPRETATION: In summary, we describe MAST3 as a novel epilepsy-associated gene with a potential gain-of-function pathogenic mechanism that may be primarily restricted to excitatory neurons in the cortex. ANN NEUROL 2021;90:274-284.


Subject(s)
Epilepsy/diagnostic imaging , Epilepsy/genetics , Genetic Variation/genetics , Microtubule-Associated Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Adolescent , Adult , Amino Acid Sequence , Animals , Child , Cohort Studies , Epilepsy/metabolism , Female , Follow-Up Studies , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/biosynthesis , Protein Serine-Threonine Kinases/biosynthesis , Young Adult
7.
Brain ; 143(12): 3564-3573, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33242881

ABSTRACT

KCNN2 encodes the small conductance calcium-activated potassium channel 2 (SK2). Rodent models with spontaneous Kcnn2 mutations show abnormal gait and locomotor activity, tremor and memory deficits, but human disorders related to KCNN2 variants are largely unknown. Using exome sequencing, we identified a de novo KCNN2 frameshift deletion in a patient with learning disabilities, cerebellar ataxia and white matter abnormalities on brain MRI. This discovery prompted us to collect data from nine additional patients with de novo KCNN2 variants (one nonsense, one splice site, six missense variants and one in-frame deletion) and one family with a missense variant inherited from the affected mother. We investigated the functional impact of six selected variants on SK2 channel function using the patch-clamp technique. All variants tested but one, which was reclassified to uncertain significance, led to a loss-of-function of SK2 channels. Patients with KCNN2 variants had motor and language developmental delay, intellectual disability often associated with early-onset movement disorders comprising cerebellar ataxia and/or extrapyramidal symptoms. Altogether, our findings provide evidence that heterozygous variants, likely causing a haploinsufficiency of the KCNN2 gene, lead to novel autosomal dominant neurodevelopmental movement disorders mirroring phenotypes previously described in rodents.


Subject(s)
Movement Disorders/genetics , Neurodevelopmental Disorders/genetics , Small-Conductance Calcium-Activated Potassium Channels/genetics , Adolescent , Adult , Cerebellar Ataxia/genetics , Cerebellar Ataxia/psychology , Child , Child, Preschool , Electrophysiological Phenomena , Exome , Frameshift Mutation , Genetic Variation , Haploinsufficiency , Humans , Intellectual Disability/genetics , Intellectual Disability/psychology , Learning Disabilities/genetics , Learning Disabilities/psychology , Magnetic Resonance Imaging , Male , Middle Aged , Movement Disorders/psychology , Mutation, Missense/genetics , Neurodevelopmental Disorders/psychology , Patch-Clamp Techniques , White Matter/abnormalities , White Matter/diagnostic imaging , Young Adult
8.
Am J Med Genet A ; 182(5): 962-973, 2020 05.
Article in English | MEDLINE | ID: mdl-32031333

ABSTRACT

CDC42BPB encodes MRCKß (myotonic dystrophy-related Cdc42-binding kinase beta), a serine/threonine protein kinase, and a downstream effector of CDC42, which has recently been associated with Takenouchi-Kosaki syndrome, an autosomal dominant neurodevelopmental disorder. We identified 12 heterozygous predicted deleterious variants in CDC42BPB (9 missense, 2 frameshift, and 1 nonsense) in 14 unrelated individuals (confirmed de novo in 11/14) with neurodevelopmental disorders including developmental delay/intellectual disability, autism, hypotonia, and structural brain abnormalities including cerebellar vermis hypoplasia and agenesis/hypoplasia of the corpus callosum. The frameshift and nonsense variants in CDC42BPB are expected to be gene-disrupting and lead to haploinsufficiency via nonsense-mediated decay. All missense variants are located in highly conserved and functionally important protein domains/regions: 3 are found in the protein kinase domain, 2 are in the citron homology domain, and 4 in a 20-amino acid sequence between 2 coiled-coil regions, 2 of which are recurrent. Future studies will help to delineate the natural history and to elucidate the underlying biological mechanisms of the missense variants leading to the neurodevelopmental and behavioral phenotypes.


Subject(s)
Developmental Disabilities/genetics , Intellectual Disability/genetics , Myotonin-Protein Kinase/genetics , Neurodevelopmental Disorders/genetics , Adolescent , Adult , Amino Acid Sequence , Autistic Disorder/epidemiology , Autistic Disorder/genetics , Autistic Disorder/pathology , Child , Child, Preschool , Developmental Disabilities/epidemiology , Developmental Disabilities/pathology , Female , Frameshift Mutation , Haploinsufficiency , Heterozygote , Humans , Infant , Infant, Newborn , Intellectual Disability/epidemiology , Intellectual Disability/pathology , Loss of Function Mutation/genetics , Male , Mutation, Missense/genetics , Neurodevelopmental Disorders/epidemiology , Neurodevelopmental Disorders/pathology , Phenotype
9.
Genet Med ; 22(2): 389-397, 2020 02.
Article in English | MEDLINE | ID: mdl-31388190

ABSTRACT

PURPOSE: Sifrim-Hitz-Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants inCHD4. In this study, we investigated the clinical spectrum of the disorder, genotype-phenotype correlations, and the effect of different missense variants on CHD4 function. METHODS: We collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains. RESULTS: The majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype-phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains. CONCLUSION: The CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.


Subject(s)
Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Neurodevelopmental Disorders/genetics , Abnormalities, Multiple/genetics , Adolescent , Adult , Child , Child, Preschool , Chromatin Assembly and Disassembly/genetics , Developmental Disabilities/genetics , Female , Genetic Association Studies , Genotype , Hearing Loss/genetics , Heart Defects, Congenital/genetics , Humans , Infant , Infant, Newborn , Intellectual Disability/genetics , Male , Megalencephaly/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Musculoskeletal Abnormalities/genetics , Mutation, Missense/genetics , Phenotype , Syndrome , Transcription Factors/genetics
11.
Hum Mutat ; 40(8): 1013-1029, 2019 08.
Article in English | MEDLINE | ID: mdl-31021519

ABSTRACT

SATB2-associated syndrome (SAS) is an autosomal dominant neurodevelopmental disorder caused by alterations in the SATB2 gene. Here we present a review of published pathogenic variants in the SATB2 gene to date and report 38 novel alterations found in 57 additional previously unreported individuals. Overall, we present a compilation of 120 unique variants identified in 155 unrelated families ranging from single nucleotide coding variants to genomic rearrangements distributed throughout the entire coding region of SATB2. Single nucleotide variants predicted to result in the occurrence of a premature stop codon were the most commonly seen (51/120 = 42.5%) followed by missense variants (31/120 = 25.8%). We review the rather limited functional characterization of pathogenic variants and discuss current understanding of the consequences of the different molecular alterations. We present an expansive phenotypic review along with novel genotype-phenotype correlations. Lastly, we discuss current knowledge of animal models and present future prospects. This review should help provide better guidance for the care of individuals diagnosed with SAS.


Subject(s)
Matrix Attachment Region Binding Proteins/genetics , Mutation , Neurodevelopmental Disorders/genetics , Transcription Factors/genetics , Adolescent , Animals , Child , Child, Preschool , Codon, Terminator , Disease Models, Animal , Female , Gene Rearrangement , Genetic Association Studies , Humans , Male , Mutation, Missense , Polymorphism, Single Nucleotide
12.
Genet Med ; 20(10): 1175-1185, 2018 10.
Article in English | MEDLINE | ID: mdl-29469822

ABSTRACT

PURPOSE: To characterize the molecular genetics of autosomal recessive Noonan syndrome. METHODS: Families underwent phenotyping for features of Noonan syndrome in children and their parents. Two multiplex families underwent linkage analysis. Exome, genome, or multigene panel sequencing was used to identify variants. The molecular consequences of observed splice variants were evaluated by reverse-transcription polymerase chain reaction. RESULTS: Twelve families with a total of 23 affected children with features of Noonan syndrome were evaluated. The phenotypic range included mildly affected patients, but it was lethal in some, with cardiac disease and leukemia. All of the parents were unaffected. Linkage analysis using a recessive model supported a candidate region in chromosome 22q11, which includes LZTR1, previously shown to harbor mutations in patients with Noonan syndrome inherited in a dominant pattern. Sequencing analyses of 21 live-born patients and a stillbirth identified biallelic pathogenic variants in LZTR1, including putative loss-of-function, missense, and canonical and noncanonical splicing variants in the affected children, with heterozygous, clinically unaffected parents and heterozygous or normal genotypes in unaffected siblings. CONCLUSION: These clinical and genetic data confirm the existence of a form of Noonan syndrome that is inherited in an autosomal recessive pattern and identify biallelic mutations in LZTR1.


Subject(s)
Genetic Predisposition to Disease , Noonan Syndrome/genetics , Transcription Factors/genetics , Adolescent , Child , Child, Preschool , Exome/genetics , Female , Genetic Linkage , Genotype , Heterozygote , Humans , Infant , Male , Mutation , Noonan Syndrome/pathology , Pedigree , Protein Isoforms/genetics , RNA Splicing/genetics , Siblings
13.
Genome Med ; 9(1): 83, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28934986

ABSTRACT

BACKGROUND: Exon-targeted microarrays can detect small (<1000 bp) intragenic copy number variants (CNVs), including those that affect only a single exon. This genome-wide high-sensitivity approach increases the molecular diagnosis for conditions with known disease-associated genes, enables better genotype-phenotype correlations, and facilitates variant allele detection allowing novel disease gene discovery. METHODS: We retrospectively analyzed data from 63,127 patients referred for clinical chromosomal microarray analysis (CMA) at Baylor Genetics laboratories, including 46,755 individuals tested using exon-targeted arrays, from 2007 to 2017. Small CNVs harboring a single gene or two to five non-disease-associated genes were identified; the genes involved were evaluated for a potential disease association. RESULTS: In this clinical population, among rare CNVs involving any single gene reported in 7200 patients (11%), we identified 145 de novo autosomal CNVs (117 losses and 28 intragenic gains), 257 X-linked deletion CNVs in males, and 1049 inherited autosomal CNVs (878 losses and 171 intragenic gains); 111 known disease genes were potentially disrupted by de novo autosomal or X-linked (in males) single-gene CNVs. Ninety-one genes, either recently proposed as candidate disease genes or not yet associated with diseases, were disrupted by 147 single-gene CNVs, including 37 de novo deletions and ten de novo intragenic duplications on autosomes and 100 X-linked CNVs in males. Clinical features in individuals with de novo or X-linked CNVs encompassing at most five genes (224 bp to 1.6 Mb in size) were compared to those in individuals with larger-sized deletions (up to 5 Mb in size) in the internal CMA database or loss-of-function single nucleotide variants (SNVs) detected by clinical or research whole-exome sequencing (WES). This enabled the identification of recently published genes (BPTF, NONO, PSMD12, TANGO2, and TRIP12), novel candidate disease genes (ARGLU1 and STK3), and further confirmation of disease association for two recently proposed disease genes (MEIS2 and PTCHD1). Notably, exon-targeted CMA detected several pathogenic single-exon CNVs missed by clinical WES analyses. CONCLUSIONS: Together, these data document the efficacy of exon-targeted CMA for detection of genic and exonic CNVs, complementing and extending WES in clinical diagnostics, and the potential for discovery of novel disease genes by genome-wide assay.


Subject(s)
DNA Copy Number Variations , Exons , Genetic Diseases, Inborn , Cohort Studies , Genome, Human , Homeodomain Proteins/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Neurodevelopmental Disorders/genetics , Protein Serine-Threonine Kinases/genetics , Retrospective Studies , Serine-Threonine Kinase 3 , Transcription Factors/genetics , Whole Genome Sequencing
14.
Am J Hum Genet ; 100(1): 91-104, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27939640

ABSTRACT

Identification of over 500 epigenetic regulators in humans raises an interesting question regarding how chromatin dysregulation contributes to different diseases. Bromodomain and PHD finger-containing protein 1 (BRPF1) is a multivalent chromatin regulator possessing three histone-binding domains, one non-specific DNA-binding module, and several motifs for interacting with and activating three lysine acetyltransferases. Genetic analyses of fish brpf1 and mouse Brpf1 have uncovered an important role in skeletal, hematopoietic, and brain development, but it remains unclear how BRPF1 is linked to human development and disease. Here, we describe an intellectual disability disorder in ten individuals with inherited or de novo monoallelic BRPF1 mutations. Symptoms include infantile hypotonia, global developmental delay, intellectual disability, expressive language impairment, and facial dysmorphisms. Central nervous system and spinal abnormalities are also seen in some individuals. These clinical features overlap with but are not identical to those reported for persons with KAT6A or KAT6B mutations, suggesting that BRPF1 targets these two acetyltransferases and additional partners in humans. Functional assays showed that the resulting BRPF1 variants are pathogenic and impair acetylation of histone H3 at lysine 23, an abundant but poorly characterized epigenetic mark. We also found a similar deficiency in different lines of Brpf1-knockout mice. These data indicate that aberrations in the chromatin regulator gene BRPF1 cause histone H3 acetylation deficiency and a previously unrecognized intellectual disability syndrome.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Chromatin/metabolism , Histones/metabolism , Intellectual Disability/genetics , Mutation , Nuclear Proteins/genetics , Acetylation , Adolescent , Alleles , Animals , Carrier Proteins/genetics , Child , Chromatin/chemistry , DNA-Binding Proteins , Developmental Disabilities/genetics , Face/abnormalities , Female , Histone Acetyltransferases/genetics , Humans , Lysine/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Hypotonia/genetics , Syndrome
15.
Hum Genet ; 135(5): 569-586, 2016 May.
Article in English | MEDLINE | ID: mdl-27071622

ABSTRACT

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by heterozygous point mutations or genomic deletion copy-number variants (CNVs) of FOXF1 or its upstream enhancer involving fetal lung-expressed long noncoding RNA genes LINC01081 and LINC01082. Using custom-designed array comparative genomic hybridization, Sanger sequencing, whole exome sequencing (WES), and bioinformatic analyses, we studied 22 new unrelated families (20 postnatal and two prenatal) with clinically diagnosed ACDMPV. We describe novel deletion CNVs at the FOXF1 locus in 13 unrelated ACDMPV patients. Together with the previously reported cases, all 31 genomic deletions in 16q24.1, pathogenic for ACDMPV, for which parental origin was determined, arose de novo with 30 of them occurring on the maternally inherited chromosome 16, strongly implicating genomic imprinting of the FOXF1 locus in human lungs. Surprisingly, we have also identified four ACDMPV families with the pathogenic variants in the FOXF1 locus that arose on paternal chromosome 16. Interestingly, a combination of the severe cardiac defects, including hypoplastic left heart, and single umbilical artery were observed only in children with deletion CNVs involving FOXF1 and its upstream enhancer. Our data demonstrate that genomic imprinting at 16q24.1 plays an important role in variable ACDMPV manifestation likely through long-range regulation of FOXF1 expression, and may be also responsible for key phenotypic features of maternal uniparental disomy 16. Moreover, in one family, WES revealed a de novo missense variant in ESRP1, potentially implicating FGF signaling in the etiology of ACDMPV.


Subject(s)
Genome, Human , Genomic Imprinting , Persistent Fetal Circulation Syndrome/pathology , Pulmonary Alveoli/abnormalities , Pulmonary Veins/pathology , Chromosomes, Human, Pair 16/genetics , Comparative Genomic Hybridization , Female , Forkhead Transcription Factors/genetics , Genes, Lethal , High-Throughput Nucleotide Sequencing , Humans , Infant, Newborn , Male , Pedigree , Persistent Fetal Circulation Syndrome/genetics , Pulmonary Alveoli/pathology , Sequence Deletion
16.
Elife ; 42015 Aug 27.
Article in English | MEDLINE | ID: mdl-26312503

ABSTRACT

The brain is sensitive to the dose of MeCP2 such that small fluctuations in protein quantity lead to neuropsychiatric disease. Despite the importance of MeCP2 levels to brain function, little is known about its regulation. In this study, we report eleven individuals with neuropsychiatric disease and copy-number variations spanning NUDT21, which encodes a subunit of pre-mRNA cleavage factor Im. Investigations of MECP2 mRNA and protein abundance in patient-derived lymphoblastoid cells from one NUDT21 deletion and three duplication cases show that NUDT21 regulates MeCP2 protein quantity. Elevated NUDT21 increases usage of the distal polyadenylation site in the MECP2 3' UTR, resulting in an enrichment of inefficiently translated long mRNA isoforms. Furthermore, normalization of NUDT21 via siRNA-mediated knockdown in duplication patient lymphoblasts restores MeCP2 to normal levels. Ultimately, we identify NUDT21 as a novel candidate for intellectual disability and neuropsychiatric disease, and elucidate a mechanism of pathogenesis by MeCP2 dysregulation via altered alternative polyadenylation.


Subject(s)
Cleavage And Polyadenylation Specificity Factor/genetics , Gene Dosage , Mental Disorders/physiopathology , Methyl-CpG-Binding Protein 2/analysis , RNA, Messenger/analysis , Gene Deletion , Gene Duplication , Humans , Lymphocytes/chemistry , Methyl-CpG-Binding Protein 2/genetics , Polyadenylation
17.
Hum Mol Genet ; 20(10): 1975-88, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21355048

ABSTRACT

Genomic instability is a feature of the human Xp22.31 region wherein deletions are associated with X-linked ichthyosis, mental retardation and attention deficit hyperactivity disorder. A putative homologous recombination hotspot motif is enriched in low copy repeats that mediate recurrent deletion at this locus. To date, few efforts have focused on copy number gain at Xp22.31. However, clinical testing revealed a high incidence of duplication of Xp22.31 in subjects ascertained and referred with neurobehavioral phenotypes. We systematically studied 61 unrelated subjects with rearrangements revealing gain in copy number, using multiple molecular assays. We detected not only the anticipated recurrent and simple nonrecurrent duplications, but also unexpectedly identified recurrent triplications and other complex rearrangements. Breakpoint analyses enabled us to surmise the mechanisms for many of these rearrangements. The clinical significance of the recurrent duplications and triplications were assessed using different approaches. We cannot find any evidence to support pathogenicity of the Xp22.31 duplication. However, our data suggest that the Xp22.31 duplication may serve as a risk factor for abnormal phenotypes. Our findings highlight the need for more robust Xp22.31 triplication detection in that such further gain may be more penetrant than the duplications. Our findings reveal the distribution of different mechanisms for genomic duplication rearrangements at a given locus, and provide insights into aspects of strand exchange events between paralogous sequences in the human genome.


Subject(s)
Chromosomes, Human, X/genetics , DNA Copy Number Variations/genetics , Gene Duplication/genetics , Gene Rearrangement/genetics , Base Sequence , Chromosome Breakage , Chromosome Mapping , Comparative Genomic Hybridization , Female , Gene Order , Humans , Male , Molecular Sequence Data , Phenotype , Segmental Duplications, Genomic/genetics , Sequence Alignment
18.
Genome Res ; 21(1): 33-46, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21205869

ABSTRACT

Four unrelated families with the same unbalanced translocation der(4)t(4;11)(p16.2;p15.4) were analyzed. Both of the breakpoint regions in 4p16.2 and 11p15.4 were narrowed to large ∼359-kb and ∼215-kb low-copy repeat (LCR) clusters, respectively, by aCGH and SNP array analyses. DNA sequencing enabled mapping the breakpoints of one translocation to 24 bp within interchromosomal paralogous LCRs of ∼130 kb in length and 94.7% DNA sequence identity located in olfactory receptor gene clusters, indicating nonallelic homologous recombination (NAHR) as the mechanism for translocation formation. To investigate the potential involvement of interchromosomal LCRs in recurrent chromosomal translocation formation, we performed computational genome-wide analyses and identified 1143 interchromosomal LCR substrate pairs, >5 kb in size and sharing >94% sequence identity that can potentially mediate chromosomal translocations. Additional evidence for interchromosomal NAHR mediated translocation formation was provided by sequencing the breakpoints of another recurrent translocation, der(8)t(8;12)(p23.1;p13.31). The NAHR sites were mapped within 55 bp in ∼7.8-kb paralogous subunits of 95.3% sequence identity located in the ∼579-kb (chr 8) and ∼287-kb (chr 12) LCR clusters. We demonstrate that NAHR mediates recurrent constitutional translocations t(4;11) and t(8;12) and potentially many other interchromosomal translocations throughout the human genome. Furthermore, we provide a computationally determined genome-wide "recurrent translocation map."


Subject(s)
Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 4/genetics , Recombination, Genetic , Translocation, Genetic , Chromosome Breakage , Chromosome Disorders/genetics , Chromosome Disorders/pathology , Chromosome Mapping/methods , Comparative Genomic Hybridization , Family , Female , Humans , Male , Molecular Sequence Data , Multigene Family , Oligonucleotide Array Sequence Analysis , Phenotype , Polymerase Chain Reaction/methods , Receptors, Odorant/genetics , Segmental Duplications, Genomic/genetics , Sequence Analysis, DNA
19.
J Med Genet ; 47(11): 777-81, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20921022

ABSTRACT

BACKGROUND: Congenital diaphragmatic hernia (CDH) can occur in isolation or in association with other abnormalities. We hypothesised that some cases of non-isolated CDH are caused by novel genomic disorders. METHODS AND RESULTS: In a cohort of >12, 000 patients referred for array comparative genomic hybridisation testing, we identified three individuals-two of whom had CDH--with deletions involving a ∼2.3 Mb region on chromosome 15q25.2. Two additional patients with deletions of this region have been reported, including a fetus with CDH. Clinical data from these patients suggest that recurrent deletions of 15q25.2 are associated with an increased risk of developing CDH, cognitive deficits, cryptorchidism, short stature and possibly Diamond-Blackfan anaemia (DBA). Although no known CDH-associated genes are located on 15q25.2, four genes in this region--CPEB1, AP3B2, HOMER2 and HDGFRP3--have been implicated in CNS development/function and may contribute to the cognitive deficits seen in deletion patients. Deletions of RPS17 may also predispose individuals with 15q25.2 deletions to DBA and associated anomalies. CONCLUSIONS: Individuals with recurrent deletions of 15q25.2 are at increased risk for CDH and other birth defects. A high index of suspicion should exist for the development of cognitive defects, anaemia and DBA-associated malignancies in these individuals.


Subject(s)
Abnormalities, Multiple/genetics , Anemia, Diamond-Blackfan/pathology , Chromosome Deletion , Chromosomes, Human, Pair 15/genetics , Cognition Disorders/pathology , Hernia, Diaphragmatic/pathology , Abnormalities, Multiple/pathology , Adolescent , Hernias, Diaphragmatic, Congenital , Humans , Infant , Infant, Newborn , Male , Risk Factors
20.
J Med Genet ; 47(5): 332-41, 2010 May.
Article in English | MEDLINE | ID: mdl-19914906

ABSTRACT

BACKGROUND: Deletion and the reciprocal duplication in 16p11.2 were recently associated with autism and developmental delay. METHOD: We indentified 27 deletions and 18 duplications of 16p11.2 were identified in 0.6% of all samples submitted for clinical array-CGH (comparative genomic hybridisation) analysis. Detailed molecular and phenotypic characterisations were performed on 17 deletion subjects and ten subjects with the duplication. RESULTS: The most common clinical manifestations in 17 deletion and 10 duplication subjects were speech/language delay and cognitive impairment. Other phenotypes in the deletion patients included motor delay (50%), seizures ( approximately 40%), behavioural problems ( approximately 40%), congenital anomalies ( approximately 30%), and autism ( approximately 20%). The phenotypes among duplication patients included motor delay (6/10), behavioural problems (especially attention deficit hyperactivity disorder (ADHD)) (6/10), congenital anomalies (5/10), and seizures (3/10). Patients with the 16p11.2 deletion had statistically significant macrocephaly (p<0.0017) and 6 of the 10 patients with the duplication had microcephaly. One subject with the deletion was asymptomatic and another with the duplication had a normal cognitive and behavioural phenotype. Genomic analyses revealed additional complexity to the 16p11.2 region with mechanistic implications. The chromosomal rearrangement was de novo in all but 2 of the 10 deletion cases in which parental studies were available. Additionally, 2 de novo cases were apparently mosaic for the deletion in the analysed blood sample. Three de novo and 2 inherited cases were observed in the 5 of 10 duplication patients where data were available. CONCLUSIONS: Recurrent reciprocal 16p11.2 deletion and duplication are characterised by a spectrum of primarily neurocognitive phenotypes that are subject to incomplete penetrance and variable expressivity. The autism and macrocephaly observed with deletion and ADHD and microcephaly seen in duplication patients support a diametric model of autism spectrum and psychotic spectrum behavioural phenotypes in genomic sister disorders.


Subject(s)
Abnormalities, Multiple/genetics , Chromosome Aberrations , Chromosomes, Human, Pair 16/genetics , Developmental Disabilities/genetics , Adolescent , Attention Deficit Disorder with Hyperactivity/genetics , Autistic Disorder/genetics , Child , Child, Preschool , Chromosome Deletion , Comparative Genomic Hybridization , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/pathology , Epilepsy/genetics , Female , Humans , Infant , Intellectual Disability/genetics , Language Development Disorders/genetics , Male , Microcephaly/genetics , Oligonucleotide Array Sequence Analysis , Phenotype , Segmental Duplications, Genomic , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...