Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
BMC Psychiatry ; 23(1): 461, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37353766

ABSTRACT

Psychiatric disorders are complex clinical conditions with large heterogeneity and overlap in symptoms, genetic liability and brain imaging abnormalities. Building on a dimensional conceptualization of mental health, previous studies have reported genetic overlap between psychiatric disorders and population-level mental health, and between psychiatric disorders and brain functional connectivity. Here, in 30,701 participants aged 45-82 from the UK Biobank we map the genetic associations between self-reported mental health and resting-state fMRI-based measures of brain network function. Multivariate Omnibus Statistical Test revealed 10 genetic loci associated with population-level mental symptoms. Next, conjunctional FDR identified 23 shared genetic variants between these symptom profiles and fMRI-based brain network measures. Functional annotation implicated genes involved in brain structure and function, in particular related to synaptic processes such as axonal growth (e.g. NGFR and RHOA). These findings provide further genetic evidence of an association between brain function and mental health traits in the population.


Subject(s)
Connectome , Mental Health , Humans , Connectome/methods , Biological Specimen Banks , Brain/diagnostic imaging , United Kingdom , Genome-Wide Association Study , Magnetic Resonance Imaging/methods
2.
Psychiatry Res Neuroimaging ; 332: 111633, 2023 07.
Article in English | MEDLINE | ID: mdl-37028226

ABSTRACT

Patients with schizophrenia spectrum disorders (SCZspect) and bipolar disorders (BD) show impaired function in the primary visual cortex (V1), indicated by altered visual evoked potential (VEP). While the neural substrate for altered VEP in these patients remains elusive, altered V1 structure may play a role. One previous study found a positive relationship between the amplitude of the P100 component of the VEP and V1 surface area, but not V1 thickness, in a small sample of healthy individuals. Here, we aimed to replicate these findings in a larger healthy control (HC) sample (n = 307) and to examine the same relationship in patients with SCZspect (n = 30) or BD (n = 45). We also compared the mean P100 amplitude, V1 surface area and V1 thickness between controls and patients and found no significant group differences. In HC only, we found a significant positive P100-V1 surface area association, while there were no significant P100-V1 thickness relationships in HC, SCZspect or BD. Together, our results confirm previous findings of a positive P100-V1 surface area association in HC, whereas larger patient samples are needed to further clarify the function-structure relationship in V1 in SCZspect and BD.


Subject(s)
Bipolar Disorder , Schizophrenia , Visual Cortex , Humans , Evoked Potentials, Visual , Bipolar Disorder/diagnostic imaging , Schizophrenia/diagnostic imaging , Visual Cortex/diagnostic imaging
4.
Mol Psychiatry ; 28(3): 1284-1292, 2023 03.
Article in English | MEDLINE | ID: mdl-36577840

ABSTRACT

A potential relationship between dysregulation of immune/inflammatory pathways and cognitive impairment has been suggested in severe mental illnesses (SMI), such as schizophrenia (SZ) and bipolar (BD) spectrum disorders. However, multivariate relationships between peripheral inflammatory/immune-related markers and cognitive domains are unclear, and many studies do not account for inter-individual variance in both cognitive functioning and inflammatory/immune status. This study aimed to investigate covariance patterns between inflammatory/immune-related markers and cognitive domains and further elucidate heterogeneity in a large SMI and healthy control (HC) cohort (SZ = 343, BD = 289, HC = 770). We applied canonical correlation analysis (CCA) to identify modes of maximum covariation between a comprehensive selection of cognitive domains and inflammatory/immune markers. We found that poor verbal learning and psychomotor processing speed was associated with higher levels of interleukin-18 system cytokines and beta defensin 2, reflecting enhanced activation of innate immunity, a pattern augmented in SMI compared to HC. Applying hierarchical clustering on covariance patterns identified by the CCA revealed a high cognition-low immune dysregulation subgroup with predominantly HC (24% SZ, 45% BD, 74% HC) and a low cognition-high immune dysregulation subgroup predominantly consisting of SMI patients (76% SZ, 55% BD, 26% HC). These subgroups differed in IQ, years of education, age, CRP, BMI (all groups), level of functioning, symptoms and defined daily dose (DDD) of antipsychotics (SMI cohort). Our findings suggest a link between cognitive impairment and innate immune dysregulation in a subset of individuals with severe mental illness.


Subject(s)
Bipolar Disorder , Schizophrenia , Humans , Bipolar Disorder/diagnosis , Neuropsychological Tests , Cognition , Schizophrenia/complications , Inflammation/complications , Biomarkers
5.
Schizophr Bull Open ; 4(1): sgad015, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-38812720

ABSTRACT

Background and Hypothesis: The auditory cortex (AC) may play a central role in the pathophysiology of schizophrenia and auditory hallucinations (AH). Previous schizophrenia studies report thinner AC and impaired AC function, as indicated by decreased N100 amplitude of the auditory evoked potential. However, whether these structural and functional alterations link to AH in schizophrenia remain poorly understood. Study Design: Patients with a schizophrenia spectrum disorder (SCZspect), including patients with a lifetime experience of AH (AH+), without (AH-), and healthy controls underwent magnetic resonance imaging (39 SCZspect, 22 AH+, 17 AH-, and 146 HC) and electroencephalography (33 SCZspect, 17 AH+, 16 AH-, and 144 HC). Cortical thickness of the primary (AC1, Heschl's gyrus) and secondary (AC2, Heschl's sulcus, and the planum temporale) AC was compared between SCZspect and controls and between AH+, AH-, and controls. To examine if the association between AC thickness and N100 amplitude differed between groups, we used regression models with interaction terms. Study Results: N100 amplitude was nominally smaller in SCZspect (P = .03, d = 0.42) and in AH- (P = .020, d = 0.61), while AC2 was nominally thinner in AH+ (P = .02, d = 0.53) compared with controls. AC1 thickness was positively associated with N100 amplitude in SCZspect (t = 2.56, P = .016) and AH- (t = 3.18, P = .008), while AC2 thickness was positively associated with N100 amplitude in SCZspect (t = 2.37, P = .024) and in AH+ (t = 2.68, P = .019). Conclusions: The novel findings of positive associations between AC thickness and N100 amplitude in SCZspect, suggest that a common neural substrate may underlie AC thickness and N100 amplitude alterations.

6.
Am J Psychiatry ; 179(11): 833-843, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36069018

ABSTRACT

OBJECTIVE: Mental disorders are heritable and polygenic, and genome-wide genetic correlations (rg) have indicated widespread shared genetic risk across multiple disorders and related traits, mirroring their overlapping clinical characteristics. However, rg may underestimate the shared genetic underpinnings of mental disorders and related traits because it does not differentiate mixtures of concordant and discordant genetic effects from an absence of genetic overlap. Using novel statistical genetics tools, the authors aimed to evaluate the genetic overlap between mental disorders and related traits when accounting for mixed effect directions. METHODS: The authors applied the bivariate causal mixture model (MiXeR) to summary statistics for four mental disorders, four related mental traits, and height from genome-wide association studies (Ns ranged from 53,293 to 766,345). MiXeR estimated the number of "causal" variants for a given trait ("polygenicity"), the number of variants shared between traits, and the genetic correlation of shared variants (rgs). Local rg was investigated using LAVA. RESULTS: Among mental disorders, ADHD was the least polygenic (5.6K "causal" variants), followed by bipolar disorder (8.6K), schizophrenia (9.6K), and depression (14.5K). Most variants were shared across mental disorders (4.4K-9.3K) and between mental disorders and related traits (5.2K-12.8K), but with disorder-specific variations in rg and rgs. Overlap with height was small (0.7K-1.1K). MiXeR estimates correlated with LAVA local rg (r=0.88, p<0.001). CONCLUSIONS: There is extensive genetic overlap across mental disorders and related traits, with mixed effect directions and few disorder-specific variants. This suggests that genetic risk for mental disorders is predominantly differentiated by divergent effect distributions of pleiotropic genetic variants rather than disorder-specific variants. This represents a conceptual advance in our understanding of the landscape of shared genetic architecture across mental disorders, which may inform genetic discovery, biological characterization, nosology, and genetic prediction.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Bipolar Disorder , Mental Disorders , Humans , Genome-Wide Association Study , Attention Deficit Disorder with Hyperactivity/genetics , Multifactorial Inheritance/genetics , Phenotype , Bipolar Disorder/genetics , Mental Disorders/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide
7.
Transl Psychiatry ; 12(1): 161, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35422097

ABSTRACT

Cortical microstructure is influenced by circadian rhythm and sleep deprivation, yet the precise underpinnings of these effects remain unclear. The ratio between T1-weighted and T2-weighted magnetic resonance images (T1w/T2w ratio) has been linked to myelin levels and dendrite density and may offer novel insight into the intracortical microstructure of the sleep deprived brain. Here, we examined intracortical T1w/T2w ratio in 41 healthy young adults (26 women) before and after 32 h of either sleep deprivation (n = 18) or a normal sleep-wake cycle (n = 23). Linear models revealed significant group differences in T1w/T2w ratio change after 32 h in four clusters, including bilateral effects in the insular, cingulate, and superior temporal cortices, comprising regions involved in attentional, auditory and pain processing. Across clusters, the sleep deprived group showed an increased T1w/T2w ratio, while the normal sleep-wake group exhibited a reduced ratio. These changes were not explained by in-scanner head movement, and 95% of the effects across clusters remained significant after adjusting for cortical thickness and hydration. Compared with a normal sleep-wake cycle, 32 h of sleep deprivation yields intracortical T1w/T2w ratio increases. While the intracortical changes detected by this study could reflect alterations in myelin or dendritic density, or both, histological analyses are needed to clarify the precise underlying cortical processes.


Subject(s)
Magnetic Resonance Imaging , Sleep Deprivation , Brain , Female , Humans , Magnetic Resonance Imaging/methods , Male , Myelin Sheath/pathology , Sleep Deprivation/diagnostic imaging , Young Adult
8.
Sci Adv ; 7(51): eabj9446, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34910505

ABSTRACT

The folding of the human cerebral cortex is a highly genetically regulated process that allows for a much larger surface area to fit into the cranial vault and optimizes functional organization. Sulcal depth is a robust yet understudied measure of localized folding, previously associated with multiple neurodevelopmental disorders. Here, we report the first genome-wide association study of sulcal depth. Through the multivariate omnibus statistical test (MOSTest) applied to vertex-wise measures from 33,748 U.K. Biobank participants (mean age, 64.3 years; 52.0% female), we identified 856 genome-wide significant loci (P < 5 × 10−8). Comparisons with cortical thickness and surface area indicated that sulcal depth has higher locus yield, heritability, and effective sample size. There was a large amount of genetic overlap between these traits, with gene-based analyses indicating strong associations with neurodevelopmental processes. Our findings demonstrate sulcal depth is a promising neuroimaging phenotype that may enhance our understanding of cortical morphology.

9.
Schizophr Bull ; 47(6): 1751-1760, 2021 10 21.
Article in English | MEDLINE | ID: mdl-33963856

ABSTRACT

Several lines of research suggest that impairments in long-term potentiation (LTP)-like synaptic plasticity might be a key pathophysiological mechanism in schizophrenia (SZ) and bipolar disorder type I (BDI) and II (BDII). Using modulations of visually evoked potentials (VEP) of the electroencephalogram, impaired LTP-like visual cortical plasticity has been implicated in patients with BDII, while there has been conflicting evidence in SZ, a lack of research in BDI, and mixed results regarding associations with symptom severity, mood states, and medication. We measured the VEP of patients with SZ spectrum disorders (n = 31), BDI (n = 34), BDII (n = 33), and other BD spectrum disorders (n = 2), and age-matched healthy control (HC) participants (n = 200) before and after prolonged visual stimulation. Compared to HCs, modulation of VEP component N1b, but not C1 or P1, was impaired both in patients within the SZ spectrum (χ 2 = 35.1, P = 3.1 × 10-9) and BD spectrum (χ 2 = 7.0, P = 8.2 × 10-3), including BDI (χ 2 = 6.4, P = .012), but not BDII (χ 2 = 2.2, P = .14). N1b modulation was also more severely impaired in SZ spectrum than BD spectrum patients (χ 2 = 14.2, P = 1.7 × 10-4). N1b modulation was not significantly associated with Positive and Negative Syndrome Scale (PANSS) negative or positive symptoms scores, number of psychotic episodes, Montgomery and Åsberg Depression Rating Scale (MADRS) scores, or Young Mania Rating Scale (YMRS) scores after multiple comparison correction, although a nominal association was observed between N1b modulation and PANSS negative symptoms scores among SZ spectrum patients. These results suggest that LTP-like plasticity is impaired in SZ and BD. Adding to previous genetic, pharmacological, and electrophysiological evidence, these results implicate aberrant synaptic plasticity as a mechanism underlying SZ and BD.


Subject(s)
Bipolar Disorder/physiopathology , Cyclothymic Disorder/physiopathology , Evoked Potentials, Visual/physiology , Neuronal Plasticity/physiology , Psychotic Disorders/physiopathology , Schizophrenia/physiopathology , Visual Cortex/physiopathology , Adolescent , Adult , Aged , Anticonvulsants/pharmacology , Antipsychotic Agents/pharmacology , Bipolar Disorder/drug therapy , Cyclothymic Disorder/drug therapy , Electroencephalography , Evoked Potentials, Visual/drug effects , Female , Humans , Male , Middle Aged , Neuronal Plasticity/drug effects , Psychotic Disorders/drug therapy , Schizophrenia/drug therapy , Visual Cortex/drug effects , Young Adult
10.
Transl Psychiatry ; 11(1): 202, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33795632

ABSTRACT

Genome-wide association studies (GWAS) and family-based studies have revealed partly overlapping genetic architectures between various psychiatric disorders. Given clinical overlap between disorders, our knowledge of the genetic architectures underlying specific symptom profiles and risk factors is limited. Here, we aimed to derive distinct profiles relevant to mental health in healthy individuals and to study how these genetically relate to each other and to common psychiatric disorders. Using independent component analysis, we decomposed self-report mental health questionnaires from 136,678 healthy individuals of the UK Biobank, excluding data from individuals with a diagnosed neurological or psychiatric disorder, into 13 distinct profiles relevant to mental health, capturing different symptoms as well as social and risk factors underlying reduced mental health. Utilizing genotypes from 117,611 of those individuals with White British ancestry, we performed GWAS for each mental health profile and assessed genetic correlations between these profiles, and between the profiles and common psychiatric disorders and cognitive traits. We found that mental health profiles were genetically correlated with a wide range of psychiatric disorders and cognitive traits, with strongest effects typically observed between a given mental health profile and a disorder for which the profile is common (e.g. depression symptoms and major depressive disorder, or psychosis and schizophrenia). Strikingly, although the profiles were phenotypically uncorrelated, many of them were genetically correlated with each other. This study provides evidence that statistically independent mental health profiles partly share genetic underpinnings and show genetic overlap with psychiatric disorders, suggesting that shared genetics across psychiatric disorders cannot be exclusively attributed to the known overlapping symptomatology between the disorders.


Subject(s)
Depressive Disorder, Major , Mental Disorders , Psychotic Disorders , Schizophrenia , Depressive Disorder, Major/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Mental Disorders/genetics , Mental Health , Psychotic Disorders/genetics , Schizophrenia/genetics
11.
Int J Psychophysiol ; 161: 1-12, 2021 03.
Article in English | MEDLINE | ID: mdl-33388368

ABSTRACT

RATIONALE: For visual perspective taking (VPT) using the avatar task, examinations of neural processes using event related potentials (ERP) indicate a distinction between an early posterior perspective calculation process (P3) and a later frontal process (LFSW) managing perspective conflict. While it is unknown if these neural processes are affected in clinical populations, it is unclear if the avatar task can be applied to this group, due to the long duration and sensitivity to data loss. Thus, we performed a methodological study of the avatar task, testing the feasibility of a shortened experimental paradigm. OBJECTIVE: To investigate whether previously reported behavioural and ERP effects in the avatar task can also be seen if analysing all trials (matching/non-matching) jointly, and whether they remain robust if only a subset of the data is analysed. METHOD: Healthy individuals (n = 20) completed the avatar task with ERP measurement. ERP components (P3, LFSW) and behavioural data were investigated by A) comparing use of only matching trials (n = 384) versus all trials (n = 768), and B) examining if reduced duration of assessment, by analysing only a subset of the data, impacts ERP findings. RESULTS: We observed minimal differences when analysing data from only matching trial types compared to all trial types. Further, ERP amplitudes and latency findings were replicated when analysing only a subset of the data. CONCLUSIONS: The duration of the avatar task can be reduced to avoid long testing times, thus making it better suited for use in clinical populations.


Subject(s)
Evoked Potentials , Humans
12.
Neuroimage ; 226: 117540, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33186715

ABSTRACT

Sleep deprivation influences several critical functions, yet how it affects human brain white matter (WM) is not well understood. The aim of the present work was to investigate the effect of 32 hours of sleep deprivation on WM microstructure compared to changes observed in a normal sleep-wake cycle (SWC). To this end, we utilised diffusion weighted imaging (DWI) including the diffusion tensor model, diffusion kurtosis imaging and the spherical mean technique, a novel biophysical diffusion model. 46 healthy adults (23 sleep deprived vs 23 with normal SWC) underwent DWI across four time points (morning, evening, next day morning and next day afternoon, after a total of 32 hours). Linear mixed models revealed significant group × time interaction effects, indicating that sleep deprivation and normal SWC differentially affect WM microstructure. Voxel-wise comparisons showed that these effects spanned large, bilateral WM regions. These findings provide important insight into how sleep deprivation affects the human brain.


Subject(s)
Brain/pathology , Diffusion Tensor Imaging/methods , Sleep Deprivation/pathology , White Matter/pathology , Adult , Brain/diagnostic imaging , Female , Humans , Image Interpretation, Computer-Assisted , Male , Sleep/physiology , Sleep Deprivation/diagnostic imaging , White Matter/diagnostic imaging
13.
Neuroimage ; 223: 117302, 2020 12.
Article in English | MEDLINE | ID: mdl-32828930

ABSTRACT

Experience-dependent modulation of the visual evoked potential (VEP) is a promising proxy measure of synaptic plasticity in the cerebral cortex. However, existing studies are limited by small to moderate sample sizes as well as by considerable variability in how VEP modulation is quantified. In the present study, we used a large sample (n = 415) of healthy volunteers to compare different quantifications of VEP modulation with regards to effect sizes and retention of the modulation effect over time. We observed significant modulation for VEP components C1 (Cohen's d = 0.53), P1 (d = 0.66), N1 (d=-0.27), N1b (d=-0.66), but not P2 (d = 0.08), and in three clusters of total power modulation, 2-4 min after 2 Hz prolonged visual stimulation. For components N1 (d=-0.21) and N1b (d=-0.38), as well for the total power clusters, this effect was retained after 54-56 min, by which time also the P2 component had gained modulation (d = 0.54). Moderate to high correlations (0.39≤ρ≤0.69) between modulation at different postintervention blocks revealed a relatively high temporal stability in the modulation effect for each VEP component. However, different VEP components also showed markedly different temporal retention patterns. Finally, participant age correlated negatively with C1 (χ2=30.4), and positively with P1 modulation (χ2=13.4), whereas P2 modulation was larger for female participants (χ2=15.4). There were no effects of either age or sex on N1 and N1b potentiation. These results provide strong support for VEP modulation, and especially N1b modulation, as a robust measure of synaptic plasticity, but underscore the need to differentiate between components, and to control for demographic confounders.


Subject(s)
Brain/physiology , Evoked Potentials, Visual , Neuronal Plasticity , Adolescent , Adult , Aged , Aged, 80 and over , Electroencephalography , Evoked Potentials , Female , Humans , Male , Middle Aged , Photic Stimulation , Young Adult
14.
Neuroimage ; 212: 116682, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32114147

ABSTRACT

Recently, several magnetic resonance imaging (MRI) studies have reported time-of-day effects on brain structure and function. Due to the possibility that time-of-day effects reflect mechanisms of circadian regulation, the aim of this prospective study was to assess these effects while under strict experimental control of variables that might influence biological clocks, such as caffeine intake and exposure to blue-emitting light. In addition, the current study assessed whether time-of-day effects were driven by changes to extracellular space, by including estimations of non-Gaussian diffusion metrics obtained from diffusion kurtosis imaging, white matter tract integrity and the spherical mean technique, in addition to conventional diffusion tensor imaging -derived parameters. Participants were 47 healthy adults who underwent diffusion-weighted imaging in the morning and evening of the same day. Morning and evening scans were compared using voxel-wise tract based spatial statistics and permutation testing. A day of wakefulness was associated with widespread increases in fractional anisotropy, indices of kurtosis and indices of the axonal water fraction. In addition, wakefulness was associated with widespread decreases in radial diffusivity, both in the single compartment and in extra-axonal space. These results suggest that an increase in the intra-axonal space relative to the extra-axonal volume underlies time-of-day effects in human white matter, which is in line with activity-induced reductions to the extracellular volume. These findings provide important insight into possible mechanisms driving time-of-day effects in MRI.


Subject(s)
Brain , Diffusion Magnetic Resonance Imaging/methods , Extracellular Space , Wakefulness , White Matter , Adult , Female , Humans , Male , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...