Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Mitochondrial DNA B Resour ; 9(4): 432-436, 2024.
Article in English | MEDLINE | ID: mdl-38586507

ABSTRACT

Meller's mongoose (Rhynchogale melleri) is a member of the family Herpestidae (Mammalia: Carnivora) and the sole species in the genus Rhynchogale. It is primarily found in savannas and open woodlands of eastern sub-Saharan Africa. Here, we report the first complete mitochondrial genome for a female Meller's mongoose collected in Tanzania, generated using a genome-skimming approach. The mitogenome had a final length of 16,644 bp and a total of 37 annotated genes. Phylogenetic analysis validated the placement of this species in the herpestid subfamily Herpestinae. Ultimately, the outcomes of this research offer a genetic foundation for future studies of Meller's mongoose.

2.
J Virol ; 96(23): e0120122, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36374109

ABSTRACT

Feline leukemia virus (FeLV) is a gammaretrovirus with horizontally transmitted and endogenous forms. Domestic cats are the primary reservoir species, but FeLV outbreaks in endangered Florida panthers and Iberian lynxes have resulted in mortalities. To assess prevalence and interspecific/intraspecific transmission, we conducted an extensive survey and phylogenetic analysis of FeLV infection in free-ranging pumas (n = 641) and bobcats (n = 212) and shelter domestic cats (n = 304). Samples were collected from coincident habitats across the United States between 1985 and 2018. FeLV infection was detected in 3.12% of the puma samples, 0.47% of the bobcat samples, and 6.25% of the domestic cat samples analyzed. Puma prevalence varied by location, with Florida having the highest rate of infection. FeLV env sequences revealed variation among isolates, and we identified two distinct clades. Both progressive and regressive infections were identified in cats and pumas. Based on the time and location of sampling and phylogenetic analysis, we inferred 3 spillover events between domestic cats and pumas; 3 puma-to-puma transmissions in Florida were inferred. An additional 14 infections in pumas likely represented spillover events following contact with reservoir host domestic cat populations. Our data provide evidence that FeLV transmission from domestic cats to pumas occurs widely across the United States, and puma-to-puma transmission may occur in genetically and geographically constrained populations. IMPORTANCE Feline leukemia virus (FeLV) is a retrovirus that primarily affects domestic cats. Close interactions with domestic cats, including predation, can lead to the interspecific transmission of the virus to pumas, bobcats, or other feline species. Some infected individuals develop progressive infections, which are associated with clinical signs of disease and can result in mortality. Therefore, outbreaks of FeLV in wildlife, including the North American puma and the endangered Florida panther, are of high conservation concern. This work provides a greater understanding of the dynamics of the transmission of FeLV between domestic cats and wild felids and presents evidence of multiple spillover events and infections in all sampled populations. These findings highlight the concern for pathogen spillover from domestic animals to wildlife but also identify an opportunity to understand viral evolution following cross-species transmissions more broadly.


Subject(s)
Cats , Leukemia Virus, Feline , Leukemia, Feline , Puma , Animals , Cats/virology , Animals, Wild/virology , Leukemia Virus, Feline/isolation & purification , Leukemia, Feline/epidemiology , Lynx/virology , Phylogeny , Puma/virology , United States
3.
J Hered ; 113(5): 491-499, 2022 10 21.
Article in English | MEDLINE | ID: mdl-35930593

ABSTRACT

Genetic admixture is a biological event inherent to genetic rescue programs aimed at the long-term conservation of endangered wildlife. Although the success of such programs can be measured by the increase in genetic diversity and fitness of subsequent admixed individuals, predictions supporting admixture costs to fitness due to the introduction of novel deleterious alleles are necessary. Here, we analyzed nonsynonymous variation from conserved genes to quantify and compare levels of mutation load (i.e. proportion of deleterious alleles and genotypes carrying these alleles) among endangered Florida panthers and non-endangered Texas pumas. Specifically, we used canonical (i.e. non-admixed) Florida panthers, Texas pumas, and F1 (canonical Florida × Texas) panthers dating from a genetic rescue program and Everglades National Park panthers with Central American ancestry resulting from an earlier admixture event. We found neither genetic drift nor selection significantly reduced overall proportions of deleterious alleles in the severely bottlenecked canonical Florida panthers. Nevertheless, the deleterious alleles identified were distributed into a disproportionately high number of homozygous genotypes due to close inbreeding in this group. Conversely, admixed Florida panthers (either with Texas or Central American ancestry) presented reduced levels of homozygous genotypes carrying deleterious alleles but increased levels of heterozygous genotypes carrying these variants relative to canonical Florida panthers. Although admixture is likely to alleviate the load of standing deleterious variation present in homozygous genotypes, our results suggest that introduced novel deleterious alleles (temporarily present in heterozygous state) in genetically rescued populations could potentially be expressed in subsequent generations if their effective sizes remain small.


Subject(s)
Puma , Humans , Animals , Puma/genetics , Inbreeding , Animals, Wild , Heterozygote , Mutation , Genetic Variation
4.
J Virol ; 95(18): e0035321, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34232703

ABSTRACT

Feline leukemia virus (FeLV) is associated with a range of clinical signs in felid species. Differences in disease processes are closely related to genetic variation in the envelope (env) region of the genome of six defined subgroups. The primary hosts of FeLV are domestic cats of the Felis genus that also harbor endogenous FeLV (enFeLV) elements stably integrated in their genomes. EnFeLV elements display 86% nucleotide identity to exogenous, horizontally transmitted FeLV (FeLV-A). Variation between enFeLV and FeLV-A is primarily in the long terminal repeat (LTR) and env regions, which potentiates generation of the FeLV-B recombinant subgroup during natural infection. The aim of this study was to examine recombination behavior of exogenous FeLV (exFeLV) and enFeLV in a natural FeLV epizootic. We previously described that of 65 individuals in a closed colony, 32 had productive FeLV-A infection, and 22 of these individuals had detectable circulating FeLV-B. We cloned and sequenced the env gene of FeLV-B, FeLV-A, and enFeLV spanning known recombination breakpoints and examined between 1 and 13 clones in 22 animals with FeLV-B to assess sequence diversity and recombination breakpoints. Our analysis revealed that FeLV-A sequences circulating in the population, as well as enFeLV env sequences, are highly conserved. We documented many recombination breakpoints resulting in the production of unique FeLV-B genotypes. More than half of the cats harbored more than one FeLV-B variant, suggesting multiple recombination events between enFeLV and FeLV-A. We concluded that FeLV-B was predominantly generated de novo within each host, although we could not definitively rule out horizontal transmission, as nearly all cats harbored FeLV-B sequences that were genetically highly similar to those identified in other individuals. This work represents a comprehensive analysis of endogenous-exogenous retroviral interactions with important insights into host-virus interactions that underlie disease pathogenesis in a natural setting. IMPORTANCE Feline leukemia virus (FeLV) is a felid retrovirus with a variety of disease outcomes. Exogenous FeLV-A is the virus subgroup almost exclusively transmitted between cats. Recombination between FeLV-A and endogenous FeLV analogues in the cat genome may result in emergence of largely replication-defective but highly virulent subgroups. FeLV-B is formed when the 3' envelope (env) region of endogenous FeLV (enFeLV) recombines with that of the exogenous FeLV (exFeLV) during viral reverse transcription and integration. Both domestic cats and wild relatives of the Felis genus harbor enFeLV, which has been shown to limit FeLV-A disease outcome. However, enFeLV also contributes genetic material to the recombinant FeLV-B subgroup. This study evaluates endogenous-exogenous recombination outcomes in a naturally infected closed colony of cats to determine mechanisms and risk of endogenous retroviral recombination during exogenous virus exposure that leads to enhanced virulence. While FeLV-A and enFeLV env regions were highly conserved from cat to cat, nearly all individuals with emergent FeLV-B had unique combinations of genotypes, representative of a wide range of recombination sites within env. The findings provide insight into unique recombination patterns for emergence of new pathogens and can be related to similar viruses across species.


Subject(s)
Endogenous Retroviruses/genetics , Genes, env , Leukemia Virus, Feline/genetics , Leukemia, Feline/virology , RNA, Viral/genetics , Recombination, Genetic , Retroviridae Infections/virology , Animals , Cats , Endogenous Retroviruses/classification , Female , Leukemia Virus, Feline/classification , Male , Terminal Repeat Sequences
5.
J Hered ; 112(2): 165-173, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33305796

ABSTRACT

In addition to including one of the most popular companion animals, species from the cat family Felidae serve as a powerful system for genetic analysis of inherited and infectious disease, as well as for the study of phenotypic evolution and speciation. Previous diploid-based genome assemblies for the domestic cat have served as the primary reference for genomic studies within the cat family. However, these versions suffered from poor resolution of complex and highly repetitive regions, with substantial amounts of unplaced sequence that is polymorphic or copy number variable. We sequenced the genome of a female F1 Bengal hybrid cat, the offspring of a domestic cat (Felis catus) x Asian leopard cat (Prionailurus bengalensis) cross, with PacBio long sequence reads and used Illumina sequence reads from the parents to phase >99.9% of the reads into the 2 species' haplotypes. De novo assembly of the phased reads produced highly continuous haploid genome assemblies for the domestic cat and Asian leopard cat, with contig N50 statistics exceeding 83 Mb for both genomes. Whole-genome alignments reveal the Felis and Prionailurus genomes are colinear, and the cytogenetic differences between the homologous F1 and E4 chromosomes represent a case of centromere repositioning in the absence of a chromosomal inversion. Both assemblies offer significant improvements over the previous domestic cat reference genome, with a 100% increase in contiguity and the capture of the vast majority of chromosome arms in 1 or 2 large contigs. We further demonstrated that comparably accurate F1 haplotype phasing can be achieved with members of the same species when one or both parents of the trio are not available. These novel genome resources will empower studies of feline precision medicine, adaptation, and speciation.


Subject(s)
Cats/genetics , Felidae/genetics , Genome , Animals , Chromosome Mapping , Female , Haplotypes , Hybridization, Genetic , Male
6.
Vet Pathol ; 57(6): 915-925, 2020 11.
Article in English | MEDLINE | ID: mdl-33016243

ABSTRACT

Mouse kidney parvovirus (MKPV), also known as murine chapparvovirus (MuCPV), is an emerging, highly infectious agent that has been isolated from laboratory and wild mouse populations. In immunocompromised mice, MKPV produces severe chronic interstitial nephropathy and renal failure within 4 to 5 months of infection. However, the course of disease, severity of histologic lesions, and viral shedding are uncertain for immunocompetent mice. We evaluated MKPV infections in CD-1 and Swiss Webster mice, 2 immunocompetent stocks of mice. MKPV-positive CD-1 mice (n = 30) were identified at approximately 8 weeks of age by fecal PCR (polymerase chain reaction) and were subsequently housed individually for clinical observation and diagnostic sampling. Cage swabs, fecal pellets, urine, and blood were evaluated by PCR at 100 and 128 days following the initial positive test, which identified that 28 of 30 were persistently infected and 24 of these were viremic at 100 days. Histologic lesions associated with MKPV in CD-1 (n = 31) and Swiss mice (n = 11) included lymphoplasmacytic tubulointerstitial nephritis with tubular degeneration. Inclusion bodies were rare; however, intralesional MKPV mRNA was consistently detected via in situ hybridization within tubular epithelial cells of the renal cortex and within collecting duct lumina. In immunocompetent CD-1 mice, MKPV infection resulted in persistent shedding of virus for up to 10 months and a mild tubulointerstitial nephritis, raising concerns that this virus could produce study variations in immunocompetent models. Intranuclear inclusions were not a consistent feature of MKPV infection in immunocompetent mice.


Subject(s)
Nephritis, Interstitial , Parvoviridae Infections , Parvovirinae , Rodent Diseases , Animals , Kidney , Mice , Mice, Inbred Strains , Nephritis, Interstitial/veterinary , Parvoviridae Infections/veterinary , Parvovirinae/pathogenicity
7.
Pathogens ; 9(11)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33114123

ABSTRACT

Canine distemper virus (CDV) is a multi-host pathogen with variable clinical outcomes of infection across and within species. We used whole-genome sequencing (WGS) to search for viral markers correlated with clinical distemper in African lions. To identify candidate markers, we first documented single-nucleotide polymorphisms (SNPs) differentiating CDV strains associated with different clinical outcomes in lions in East Africa. We then conducted evolutionary analyses on WGS from all global CDV lineages to identify loci subject to selection. SNPs that both differentiated East African strains and were under selection were mapped to a phylogenetic tree representing global CDV diversity to assess if candidate markers correlated with documented outbreaks of clinical distemper in lions (n = 3). Of 54 SNPs differentiating East African strains, ten were under positive or episodic diversifying selection and 20 occurred in the clinical strain despite strong purifying selection at those loci. Candidate markers were in functional domains of the RNP complex (n = 19), the matrix protein (n = 4), on CDV glycoproteins (n = 5), and on the V protein (n = 1). We found mutations at two loci in common between sequences from three CDV outbreaks of clinical distemper in African lions; one in the signaling lymphocytic activation molecule receptor (SLAM)-binding region of the hemagglutinin protein and another in the catalytic center of phosphodiester bond formation on the large polymerase protein. These results suggest convergent evolution at these sites may have a functional role in clinical distemper outbreaks in African lions and uncover potential novel barriers to pathogenicity in this species.

8.
Mol Ecol ; 29(22): 4308-4321, 2020 11.
Article in English | MEDLINE | ID: mdl-32306443

ABSTRACT

The outcome of pathogen spillover from a reservoir to a novel host population can range from a "dead-end" when there is no onward transmission in the recipient population, to epidemic spread and even establishment in new hosts. Understanding the evolutionary epidemiology of spillover events leading to discrete outcomes in novel hosts is key to predicting risk and can lead to a better understanding of the mechanisms of emergence. Here we use a Bayesian phylodynamic approach to examine cross-species transmission and evolutionary dynamics during a canine distemper virus (CDV) spillover event causing clinical disease and population decline in an African lion population (Panthera leo) in the Serengeti Ecological Region between 1993 and 1994. Using 21 near-complete viral genomes from four species we found that this large-scale outbreak was likely  ignited by a single cross-species spillover event from a canid reservoir to noncanid hosts <1 year before disease detection and explosive spread of CDV in lions. Cross-species transmission from other noncanid species probably fuelled the high prevalence of CDV across spatially structured lion prides. Multiple lines of evidence suggest that spotted hyenas (Crocuta crocuta) could have acted as the proximate source of CDV exposure in lions. We report 13 nucleotide substitutions segregating CDV strains found in canids and noncanids. Our results are consistent with the hypothesis that virus evolution played a role in CDV emergence in noncanid hosts following spillover during the outbreak, suggest that host barriers to clinical infection can limit outcomes of CDV spillover in novel host species.


Subject(s)
Distemper Virus, Canine , Distemper , Lions , Animals , Animals, Wild , Bayes Theorem , Distemper/epidemiology , Distemper Virus, Canine/genetics , Parks, Recreational
9.
Genes (Basel) ; 10(11)2019 10 29.
Article in English | MEDLINE | ID: mdl-31671864

ABSTRACT

: Bovidae, the largest family in Pecora infraorder, are characterized by a striking variability in diploid number of chromosomes between species and among individuals within a species. The bovid X chromosome is also remarkably variable, with several morphological types in the family. Here we built a detailed chromosome map of musk ox (Ovibosmoschatus), a relic species originating from Pleistocene megafauna, with dromedary and human probes using chromosome painting. We trace chromosomal rearrangements during Bovidae evolution by comparing species already studied by chromosome painting. The musk ox karyotype differs from the ancestral pecoran karyotype by six fusions, one fission, and three inversions. We discuss changes in pecoran ancestral karyotype in the light of new painting data. Variations in the X chromosome structure of four bovid species nilgai bull (Boselaphustragocamelus), saola (Pseudoryxnghetinhensis), gaur (Bosgaurus), and Kirk's Dikdik (Madoquakirkii) were further analyzed using 26 cattle BAC-clones. We found the duplication on the X in saola. We show main rearrangements leading to the formation of four types of bovid X: Bovinae type with derived cattle subtype formed by centromere reposition and Antilopinae type with Caprini subtype formed by inversion in XSB3.


Subject(s)
Antelopes/genetics , X Chromosome/genetics , Animals , Chromosome Painting , Evolution, Molecular , Karyotype
10.
Viruses ; 11(10)2019 10 14.
Article in English | MEDLINE | ID: mdl-31615092

ABSTRACT

Canine distemper virus (CDV) and phocine distemper (PDV) are closely-related members of the Paramyxoviridae family, genus morbillivirus, in the order Mononegavirales. CDV has a broad host range among carnivores. PDV is thought to be derived from CDV through contact between terrestrial carnivores and seals. PDV has caused extensive mortality in Atlantic seals and other marine mammals, and more recently has spread to the North Pacific Ocean. CDV also infects marine carnivores, and there is evidence of morbillivirus infection of seals and other species in Antarctica. Recently, CDV has spread to felines and other wildlife species in the Serengeti and South Africa. Some CDV vaccines may also have caused wildlife disease. Changes in the virus haemagglutinin (H) protein, particularly the signaling lymphocyte activation molecule (SLAM) receptor binding site, correlate with adaptation to non-canine hosts. Differences in the phosphoprotein (P) gene sequences between disease and non-disease causing CDV strains may relate to pathogenicity in domestic dogs and wildlife. Of most concern are reports of CDV infection and disease in non-human primates raising the possibility of zoonosis. In this article we review the global occurrence of CDV and PDV, and present both historical and genetic information relating to these viruses crossing species barriers.


Subject(s)
Animals, Wild/virology , Distemper Virus, Canine/genetics , Distemper Virus, Phocine/genetics , Host Specificity , Morbillivirus Infections/veterinary , Morbillivirus/genetics , Animals , Cats , Cetacea/virology , Climate Change , Distemper Virus, Canine/pathogenicity , Distemper Virus, Phocine/pathogenicity , Dogs , Morbillivirus/pathogenicity , Morbillivirus/physiology , Pets/virology , Primates/virology , Viral Proteins/genetics
11.
G3 (Bethesda) ; 9(11): 3531-3536, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31519748

ABSTRACT

In the mid-1990s, the population size of Florida panthers became so small that many individuals manifested traits associated with inbreeding depression (e.g., heart defects, cryptorchidism, high pathogen-parasite load). To mitigate these effects, pumas from Texas were introduced into South Florida to augment genetic variation in Florida panthers. In this study, we report a de novo puma genome assembly and annotation after resequencing 10 individual genomes from partial Florida-Texas-F1 trios. The final genome assembly consisted of ∼2.6 Gb and 20,561 functionally annotated protein-coding genes. Foremost, expanded gene families were associated with neuronal and embryological development, whereas contracted gene families were associated with olfactory receptors. Despite the latter, we characterized 17 positively selected genes related to the refinement of multiple sensory perceptions, most notably to visual capabilities. Furthermore, genes under positive selection were enriched for the targeting of proteins to the endoplasmic reticulum, degradation of mRNAs, and transcription of viral genomes. Nearly half (48.5%) of ∼6.2 million SNPs analyzed in the total sample set contained putative unique Texas alleles. Most of these alleles were likely inherited to subsequent F1 Florida panthers, as these individuals manifested a threefold increase in observed heterozygosity with respect to their immediate, canonical Florida panther predecessors. Demographic simulations were consistent with a recent colonization event in North America by a small number of founders from South America during the last glacial period. In conclusion, we provide an extensive set of genomic resources for pumas and elucidate the genomic effects of genetic rescue on this iconic conservation success story.


Subject(s)
Conservation of Natural Resources , Genome , Puma/genetics , Animals , Comparative Genomic Hybridization , Genetic Variation
12.
Viruses ; 11(4)2019 04 19.
Article in English | MEDLINE | ID: mdl-31010173

ABSTRACT

Feline foamy virus (FFV) is a retrovirus that has been detected in multiple feline species, including domestic cats (Felis catus) and pumas (Puma concolor). FFV results in persistent infection but is generally thought to be apathogenic. Sero-prevalence in domestic cat populations has been documented in several countries, but the extent of viral infections in nondomestic felids has not been reported. In this study, we screened sera from 348 individual pumas from Colorado, Southern California and Florida for FFV exposure by assessing sero-reactivity using an FFV anti-Gag ELISA. We documented a sero-prevalence of 78.6% across all sampled subpopulations, representing 69.1% in Southern California, 77.3% in Colorado, and 83.5% in Florida. Age was a significant risk factor for FFV infection when analyzing the combined populations. This high prevalence in geographically distinct populations reveals widespread exposure of puma to FFV and suggests efficient shedding and transmission in wild populations.


Subject(s)
Cat Diseases/epidemiology , Puma/virology , Retroviridae Infections/veterinary , Spumavirus/isolation & purification , Animals , Antibodies, Viral/blood , California/epidemiology , Cat Diseases/virology , Cats , Colorado/epidemiology , Female , Florida/epidemiology , Male , Prevalence , Retroviridae Infections/epidemiology , Seroepidemiologic Studies , Species Specificity
13.
J Virol ; 92(18)2018 09 15.
Article in English | MEDLINE | ID: mdl-29976676

ABSTRACT

Exogenous feline leukemia virus (FeLV) is a feline gammaretrovirus that results in a variety of disease outcomes. Endogenous FeLV (enFeLV) is a replication-defective provirus found in species belonging to the Felis genus, which includes the domestic cat (Felis catus). There have been few studies examining interaction between enFeLV genotype and FeLV progression. We examined point-in-time enFeLV and FeLV viral loads, as well as occurrence of FeLV/enFeLV recombinants (FeLV-B), to determine factors relating to clinical disease in a closed breeding colony of cats during a natural infection of FeLV. Coinfections with feline foamy virus (FFV), feline gammaherpesvirus 1 (FcaGHV-1), and feline coronavirus (FCoV) were also documented and analyzed for impact on cat health and FeLV disease. Correlation analysis and structural equation modeling techniques were used to measure interactions among disease parameters. Progressive FeLV disease and FeLV-B presence were associated with higher FeLV proviral and plasma viral loads. Female cats were more likely to have progressive disease and FeLV-B. Conversely, enFeLV copy number was higher in male cats and negatively associated with progressive FeLV disease. Males were more likely to have abortive FeLV disease. FFV proviral load was found to correlate positively with higher FeLV proviral and plasma viral load, detection of FeLV-B, and FCoV status. Male cats were much more likely to be infected with FcaGHV-1 than female cats. This analysis provides insights into the interplay between endogenous and exogenous FeLV during naturally occurring disease and reveals striking variation in the infection patterns among four chronic viral infections of domestic cats.IMPORTANCE Endogenous retroviruses are harbored by many animals, and their interactions with exogenous retroviral infections have not been widely studied. Feline leukemia virus (FeLV) is a relevant model system to examine this question, as endogenous and exogenous forms of the virus exist. In this analysis of a large domestic cat breeding colony naturally infected with FeLV, we documented that enFeLV copy number was higher in males and inversely related to FeLV viral load and associated with better FeLV disease outcomes. Females had lower enFeLV copy numbers and were more likely to have progressive FeLV disease and FeLV-B subtypes. FFV viral load was correlated with FeLV progression. FFV, FcaGHV-1, and FeLV displayed markedly different patterns of infection with respect to host demographics. This investigation revealed complex coinfection outcomes and viral ecology of chronic infections in a closed population.


Subject(s)
Coinfection/veterinary , Endogenous Retroviruses/isolation & purification , Leukemia Virus, Feline/physiology , Leukemia, Feline/virology , Tumor Virus Infections/veterinary , Animals , Breeding , Cats , Chronic Disease/veterinary , Coinfection/virology , Endogenous Retroviruses/genetics , Female , Genotype , Leukemia Virus, Feline/genetics , Leukemia Virus, Feline/isolation & purification , Male , Viral Load
14.
Genes (Basel) ; 8(9)2017 Aug 31.
Article in English | MEDLINE | ID: mdl-28858207

ABSTRACT

The phenomenon of a remarkable conservation of the X chromosome in eutherian mammals has been first described by Susumu Ohno in 1964. A notable exception is the cetartiodactyl X chromosome, which varies widely in morphology and G-banding pattern between species. It is hypothesized that this sex chromosome has undergone multiple rearrangements that changed the centromere position and the order of syntenic segments over the last 80 million years of Cetartiodactyla speciation. To investigate its evolution we have selected 26 evolutionarily conserved bacterial artificial chromosome (BAC) clones from the cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution BAC maps of the X chromosome on a representative range of cetartiodactyl species from different branches: pig (Suidae), alpaca (Camelidae), gray whale (Cetacea), hippopotamus (Hippopotamidae), Java mouse-deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), and giraffe (Giraffidae) were obtained by fluorescent in situ hybridization. To trace the X chromosome evolution during fast radiation in specious families, we performed mapping in several cervids (moose, Siberian roe deer, fallow deer, and Pere David's deer) and bovid (muskox, goat, sheep, sable antelope, and cattle) species. We have identified three major conserved synteny blocks and rearrangements in different cetartiodactyl lineages and found that the recently described phenomenon of the evolutionary new centromere emergence has taken place in the X chromosome evolution of Cetartiodactyla at least five times. We propose the structure of the putative ancestral cetartiodactyl X chromosome by reconstructing the order of syntenic segments and centromere position for key groups.

15.
J Hered ; 108(4): 449-455, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28204600

ABSTRACT

Florida panthers are endangered pumas that currently persist in reduced patches of habitat in South Florida, USA. We performed mitogenome reference-based assemblies for most parental lines of the admixed Florida panthers that resulted from the introduction of female Texas pumas into South Florida in 1995. With the addition of 2 puma mitogenomes, we characterized 174 single nucleotide polymorphisms (SNPs) across 12 individuals. We defined 5 haplotypes (Pco1-Pco5), one of which (Pco1) had a geographic origin exclusive to Costa Rica and Panama and was possibly introduced into the Everglades National Park, Florida, prior to 1995. Haplotype Pco2 was native to Florida. Haplotypes Pco3 and Pco4 were exclusive to Texas, whereas haplotype Pco5 had an undetermined geographic origin. Phylogenetic inference suggests that haplotypes Pco1-Pco4 diverged ~202000 (95% HPDI = 83000-345000) years ago and that haplotypes Pco2-Pco4 diverged ~61000 (95% HPDI = 9000-127000) years ago. These results are congruent with a south-to-north continental expansion and with a recent North American colonization by pumas. Furthermore, pumas may have migrated from Texas to Florida no earlier than ~44000 (95% HPDI = 2000-98000) years ago. Synonymous mutations presented a greater mean substitution rate than other mitochondrial functional regions: nonsynonymous mutations, tRNAs, rRNAs, and control region. Similarly, all protein-coding genes were under predominant negative selection constraints. We directly and indirectly assessed the presence of potential deleterious SNPs in the ND2 and ND5 genes in Florida panthers prior to and as a consequence of the introduction of Texas pumas. Screenings for such variants are recommended in extant Florida panthers.


Subject(s)
Conservation of Natural Resources , Genome, Mitochondrial , Puma/genetics , Animals , Bayes Theorem , Endangered Species , Evolution, Molecular , Female , Florida , Haplotypes , Male , Phylogeny , Polymorphism, Single Nucleotide , Texas
16.
Chromosoma ; 126(4): 519-529, 2017 08.
Article in English | MEDLINE | ID: mdl-27834006

ABSTRACT

Cytogenetics has historically played a key role in research on squirrel monkey (genus Saimiri) evolutionary biology. Squirrel monkeys have a diploid number of 2n = 44, but vary in fundamental number (FN). Apparently, differences in FN have phylogenetic implications and are correlated with geographic regions. A number of hypothetical mechanisms were proposed to explain difference in FN: translocations, heterochromatin, or, most commonly, pericentric inversions. Recently, an additional mechanism, centromere repositioning, was discovered, which can alter chromosome morphology and FN. Here, we used chromosome banding, chromosome painting, and BAC-FISH to test these hypotheses. We demonstrate that centromere repositioning on chromosomes 5 and 15 is the mechanism that accounts for differences in FN. Current phylogenomic trees of platyrrhines provide a temporal framework for evolutionary new centromeres (ENC) in Saimiri. The X-chromosome ENC could be up to 15 million years (my) old that on chromosome 5 as recent as 0.3 my. The chromosome 15 ENC is intermediate, as young as 2.24 my. All ENC have abundant satellite DNAs indicating that the maturation process was fairly rapid. Callithrix jacchus was used as an outgroup for the BAC-FISH data analysis. Comparison with scaffolds from the S. boliviensis genome revealed an error in the last marmoset genome release. Future research including at the sequence level will provide better understanding of chromosome evolution in Saimiri and other platyrrhines. Probably other cases of differences in chromosome morphology and FN, both within and between taxa, will be shown to be due to centromere repositioning and not pericentric inversions.


Subject(s)
Centromere/genetics , Karyotype , Saimiri/genetics , Animals , Centromere/physiology , Chromosome Inversion , Chromosome Painting , Cytogenetic Analysis , Evolution, Molecular , Phylogeny , Translocation, Genetic
17.
Mol Biol Evol ; 32(10): 2534-46, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26006188

ABSTRACT

The phenomenon of male sterility in interspecies hybrids has been observed for over a century, however, few genes influencing this recurrent phenotype have been identified. Genetic investigations have been primarily limited to a small number of model organisms, thus limiting our understanding of the underlying molecular basis of this well-documented "rule of speciation." We utilized two interspecies hybrid cat breeds in a genome-wide association study employing the Illumina 63 K single-nucleotide polymorphism array. Collectively, we identified eight autosomal genes/gene regions underlying associations with hybrid male sterility (HMS) involved in the function of the blood-testis barrier, gamete structural development, and transcriptional regulation. We also identified several candidate hybrid sterility regions on the X chromosome, with most residing in close proximity to complex duplicated regions. Differential gene expression analyses revealed significant chromosome-wide upregulation of X chromosome transcripts in testes of sterile hybrids, which were enriched for genes involved in chromatin regulation of gene expression. Our expression results parallel those reported in Mus hybrids, supporting the "Large X-Effect" in mammalian HMS and the potential epigenetic basis for this phenomenon. These results support the value of the interspecies feline model as a powerful tool for comparison to rodent models of HMS, demonstrating unique aspects and potential commonalities that underpin mammalian reproductive isolation.


Subject(s)
Hybridization, Genetic , Infertility/genetics , Models, Biological , Animals , Breeding , Cats , Female , Gene Dosage , Genetic Association Studies , Genome , Genome-Wide Association Study , Male , Sequence Analysis, RNA , X Chromosome/genetics
18.
Cancer Immunol Res ; 3(1): 37-47, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25358764

ABSTRACT

Both targeted inhibition of oncogenic driver mutations and immune-based therapies show efficacy in treatment of patients with metastatic cancer, but responses can be either short lived or incompletely effective. Oncogene inhibition can augment the efficacy of immune-based therapy, but mechanisms by which these two interventions might cooperate are incompletely resolved. Using a novel transplantable BRAF(V600E)-mutant murine melanoma model (SB-3123), we explored potential mechanisms of synergy between the selective BRAF(V600E) inhibitor vemurafenib and adoptive cell transfer (ACT)-based immunotherapy. We found that vemurafenib cooperated with ACT to delay melanoma progression without significantly affecting tumor infiltration or effector function of endogenous or adoptively transferred CD8(+) T cells, as previously observed. Instead, we found that the T-cell cytokines IFNγ and TNFα synergized with vemurafenib to induce cell-cycle arrest of tumor cells in vitro. This combinatorial effect was recapitulated in human melanoma-derived cell lines and was restricted to cancers bearing a BRAF(V600E) mutation. Molecular profiling of treated SB-3123 indicated that the provision of vemurafenib promoted the sensitization of SB-3123 to the antiproliferative effects of T-cell effector cytokines. The unexpected finding that immune cytokines synergize with oncogene inhibitors to induce growth arrest has major implications for understanding cancer biology at the intersection of oncogenic and immune signaling and provides a basis for design of combinatorial therapeutic approaches for patients with metastatic cancer.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytokines/immunology , Immunotherapy, Adoptive , Indoles/therapeutic use , Melanoma/therapy , Neoplasm Metastasis/therapy , Sulfonamides/therapeutic use , Animals , Cell Line, Tumor , Disease Models, Animal , Disease Progression , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Proto-Oncogene Proteins B-raf/genetics , Signal Transduction , Vemurafenib
19.
BMC Genet ; 15: 68, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24923361

ABSTRACT

BACKGROUND: Pronghorn (Antilocapridae, 2n = 58) and saola (Bovidae, 2n = 50) are members of Pecora, a highly diversified group of even-toed hoofed mammals. Karyotypes of these species were not involved in chromosome painting studies despite their intriguing phylogenetic positions in Pecora. RESULTS: To trace the chromosome evolution during very fast radiation of main families from the common Pecoran ancestor, high-resolution comparative chromosome maps of pronghorn and saola with human (HSA) and dromedary camel (CDR) painting probes were established. The human and dromedary camel painting probes revealed 50 and 64 conserved segments respectively in the pronghorn genome, while 51 and 63 conserved segments respectively in the saola genome. Integrative analysis with published comparative maps showed that inversions in chromosomes homologous to CDR19/35/19 (HSA 10/20/10), CDR12/34/12 (HSA12/22/12/22), CDR10/33/10 (HSA 11) are present in representatives of all five living Pecoran families. The pronghorn karyotype could have formed from a putative 2n = 58 Pecoran ancestral karyotype by one fission and one fusion and that the saola karyotype differs from the presumed 2n = 60 bovid ancestral karyotype (2n = 60) by five fusions. CONCLUSION: The establishment of high-resolution comparative maps for pronghorn and saola has shed some new insights into the putative ancestral karyotype, chromosomal evolution and phylogenic relationships in Pecora. No cytogenetic signature rearrangements were found that could unite the Antilocapridae with Giraffidae or with any other Pecoran families. Our data on the saola support a separate position of Pseudorigyna subtribe rather than its affinity to either Bovina or Bubalina, but the saola phylogenetic position within Bovidae remains unresolved.


Subject(s)
Chromosome Mapping , Chromosome Painting , DNA Probes , Karyotype , Ruminants/genetics , Animals , Camelus , Evolution, Molecular , Humans , Male , Phylogeny
20.
J Virol ; 88(14): 7727-37, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24741092

ABSTRACT

Mountain lions (Puma concolor) throughout North and South America are infected with puma lentivirus clade B (PLVB). A second, highly divergent lentiviral clade, PLVA, infects mountain lions in southern California and Florida. Bobcats (Lynx rufus) in these two geographic regions are also infected with PLVA, and to date, this is the only strain of lentivirus identified in bobcats. We sequenced full-length PLV genomes in order to characterize the molecular evolution of PLV in bobcats and mountain lions. Low sequence homology (88% average pairwise identity) and frequent recombination (1 recombination breakpoint per 3 isolates analyzed) were observed in both clades. Viral proteins have markedly different patterns of evolution; sequence homology and negative selection were highest in Gag and Pol and lowest in Vif and Env. A total of 1.7% of sites across the PLV genome evolve under positive selection, indicating that host-imposed selection pressure is an important force shaping PLV evolution. PLVA strains are highly spatially structured, reflecting the population dynamics of their primary host, the bobcat. In contrast, the phylogeography of PLVB reflects the highly mobile mountain lion, with diverse PLVB isolates cocirculating in some areas and genetically related viruses being present in populations separated by thousands of kilometers. We conclude that PLVA and PLVB are two different viral species with distinct feline hosts and evolutionary histories. Importance: An understanding of viral evolution in natural host populations is a fundamental goal of virology, molecular biology, and disease ecology. Here we provide a detailed analysis of puma lentivirus (PLV) evolution in two natural carnivore hosts, the bobcat and mountain lion. Our results illustrate that PLV evolution is a dynamic process that results from high rates of viral mutation/recombination and host-imposed selection pressure.


Subject(s)
Genome, Viral , Immunodeficiency Virus, Feline/isolation & purification , Lynx/virology , Puma/virology , RNA, Viral/genetics , Sequence Analysis, DNA , Animals , Cluster Analysis , Evolution, Molecular , Genetic Variation , Immunodeficiency Virus, Feline/classification , Immunodeficiency Virus, Feline/genetics , Molecular Sequence Data , North America , Phylogeography , Recombination, Genetic , Selection, Genetic , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...