Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Struct Mol Biol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987455

ABSTRACT

Protein folding in vivo begins during synthesis on the ribosome and is modulated by molecular chaperones that engage the nascent polypeptide. How these features of protein biogenesis influence the maturation pathway of nascent proteins is incompletely understood. Here, we use hydrogen-deuterium exchange mass spectrometry to define, at peptide resolution, the cotranslational chaperone-assisted folding pathway of Escherichia coli dihydrofolate reductase. The nascent polypeptide folds along an unanticipated pathway through structured intermediates not populated during refolding from denaturant. Association with the ribosome allows these intermediates to form, as otherwise destabilizing carboxy-terminal sequences remain confined in the ribosome exit tunnel. Trigger factor binds partially folded states without disrupting their structure, and the nascent chain is poised to complete folding immediately upon emergence of the C terminus from the exit tunnel. By mapping interactions between the nascent chain and ribosomal proteins, we trace the path of the emerging polypeptide during synthesis. Our work reveals new mechanisms by which cellular factors shape the conformational search for the native state.

2.
Mol Cell ; 84(13): 2455-2471.e8, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38908370

ABSTRACT

Protein folding is assisted by molecular chaperones that bind nascent polypeptides during mRNA translation. Several structurally distinct classes of chaperones promote de novo folding, suggesting that their activities are coordinated at the ribosome. We used biochemical reconstitution and structural proteomics to explore the molecular basis for cotranslational chaperone action in bacteria. We found that chaperone binding is disfavored close to the ribosome, allowing folding to precede chaperone recruitment. Trigger factor recognizes compact folding intermediates that expose an extensive unfolded surface, and dictates DnaJ access to nascent chains. DnaJ uses a large surface to bind structurally diverse intermediates and recruits DnaK to sequence-diverse solvent-accessible sites. Neither Trigger factor, DnaJ, nor DnaK destabilize cotranslational folding intermediates. Instead, the chaperones collaborate to protect incipient structure in the nascent polypeptide well beyond the ribosome exit tunnel. Our findings show how the chaperone network selects and modulates cotranslational folding intermediates.


Subject(s)
Escherichia coli Proteins , Escherichia coli , HSP40 Heat-Shock Proteins , HSP70 Heat-Shock Proteins , Protein Biosynthesis , Protein Folding , Ribosomes , Ribosomes/metabolism , Ribosomes/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Protein Binding , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Models, Molecular , Protein Conformation , Peptidylprolyl Isomerase
3.
Mol Cell ; 81(14): 2901-2913.e5, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34157309

ABSTRACT

Polynucleotide phosphorylase (PNPase) is an ancient exoribonuclease conserved in the course of evolution and is found in species as diverse as bacteria and humans. Paradoxically, Escherichia coli PNPase can act not only as an RNA degrading enzyme but also by an unknown mechanism as a chaperone for small regulatory RNAs (sRNAs), with pleiotropic consequences for gene regulation. We present structures of the ternary assembly formed by PNPase, the RNA chaperone Hfq, and sRNA and show that this complex boosts sRNA stability in vitro. Comparison of structures for PNPase in RNA carrier and degradation modes reveals how the RNA is rerouted away from the active site through interactions with Hfq and the KH and S1 domains. Together, these data explain how PNPase is repurposed to protect sRNAs from cellular ribonucleases such as RNase E and could aid RNA presentation to facilitate regulatory actions on target genes.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/genetics , Host Factor 1 Protein/genetics , Polyribonucleotide Nucleotidyltransferase/genetics , RNA, Bacterial/genetics , Catalytic Domain/genetics , Endoribonucleases/genetics , Exoribonucleases/genetics , Gene Expression Regulation, Bacterial/genetics , Molecular Chaperones/genetics , RNA Stability/genetics , RNA, Small Untranslated/genetics
SELECTION OF CITATIONS
SEARCH DETAIL