Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Eur Radiol ; 30(3): 1823, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31897597

ABSTRACT

The article Towards clinical grating-interferometry mammography, written by Carolina Arboleda, Zhentian Wang, Konstantins Jefimovs, Thomas Koehler, Udo Van Stevendaal, Norbert Kuhn, Bernd David, Sven Prevrhal, Kristina Lång, Serafino Forte, Rahel Antonia Kubik-Huch, Cornelia Leo.

2.
Eur Radiol ; 30(3): 1419-1425, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31440834

ABSTRACT

OBJECTIVES: Grating-interferometry-based mammography (GIM) might facilitate breast cancer detection, as several research works have demonstrated in a pre-clinical setting, since it is able to provide attenuation, differential phase contrast, and scattering images simultaneously. In order to translate this technique to the clinics, it has to be adapted to cover a large field-of-view within a clinically acceptable exposure time and radiation dose. METHODS: We set up a grating interferometer that fits into a standard mammography system and fulfilled the aforementioned conditions. Here, we present the first mastectomy images acquired with this experimental device. RESULTS AND CONCLUSION: Our system performs at a mean glandular dose of 1.6 mGy for a 5-cm-thick, 18%-dense breast, and a field-of-view of 26 × 21 cm2. It seems to be well-suited as basis for a clinical-environment device. Further, dark-field signals seem to support an improved lesion visualization. Evidently, the effective impact of such indications must be evaluated and quantified within the context of a proper reader study. KEY POINTS: • Grating-interferometry-based mammography (GIM) might facilitate breast cancer detection, since it is sensitive to refraction and scattering and thus provides additional tissue information. • The most straightforward way to do grating-interferometry in the clinics is to modify a standard mammography device. • In a first approximation, the doses given with this technique seem to be similar to those of conventional mammography.


Subject(s)
Breast Neoplasms/diagnostic imaging , Carcinoma, Ductal, Breast/diagnostic imaging , Carcinoma, Intraductal, Noninfiltrating/diagnostic imaging , Mammography/methods , Neoplasms, Multiple Primary/diagnostic imaging , Breast Density , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Carcinoma, Ductal, Breast/pathology , Carcinoma, Ductal, Breast/surgery , Carcinoma, Intraductal, Noninfiltrating/pathology , Carcinoma, Intraductal, Noninfiltrating/surgery , Female , Humans , Interferometry/methods , Mastectomy , Neoplasms, Multiple Primary/pathology , Neoplasms, Multiple Primary/surgery , Radiation Dosage , Tumor Burden
3.
Sci Rep ; 9(1): 19850, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882698

ABSTRACT

Correct visualization of the vascular lumen is impaired in standard computed tomography (CT) because of blooming artifacts, increase of apparent size, induced by metallic stents and vascular calcifications. Recently, due to the introduction of photon-counting detectors in the X-ray imaging field, a new prototype spectral photon-counting CT (SPCCT) based on a modified clinical CT system has been tested in a feasibility study for improving vascular lumen delineation and visualization of coronary stent architecture. Coronary stents of different metal composition were deployed inside plastic tubes containing hydroxyapatite spheres to simulate vascular calcifications and in the abdominal aorta of one New Zealand White (NZW) rabbit. Imaging was performed with an SPCCT prototype, a dual-energy CT system, and a conventional 64-channel CT system (B64). We found the apparent widths of the stents significantly smaller on SPCCT than on the other two systems in vitro (p < 0.01), thus closer to the true size. Consequently, the intra-stent lumen was significantly larger on SPCCT (p < 0.01). In conclusion, owing to the increased spatial resolution of SPCCT, improved lumen visualization and delineation of stent metallic mesh is possible compared to dual-energy and conventional CT.


Subject(s)
Coronary Angiography/methods , Coronary Vessels/diagnostic imaging , Metals/chemistry , Stents , Tomography, X-Ray Computed/methods , Animals , Artifacts , Feasibility Studies , Humans , Male , Rabbits , Reproducibility of Results
4.
Sci Rep ; 8(1): 17386, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30478300

ABSTRACT

The purpose of this study was to investigate a preclinical spectral photon-counting CT (SPCCT) prototype compared to conventional CT for pulmonary imaging. A custom-made lung phantom, including nodules of different sizes and shapes, was scanned with a preclinical SPCCT and a conventional CT in standard and high-resolution (HR-CT) mode. Volume estimation was evaluated by linear regression. Shape similarity was evaluated with the Dice similarity coefficient. Spatial resolution was investigated via MTF for each imaging system. In-vivo rabbit lung images from the SPCCT system were subjectively reviewed. Evaluating the volume estimation, linear regression showed best results for the SPCCT compared to CT and HR-CT with a root mean squared error of 21.3 mm3, 28.5 mm3 and 26.4 mm3 for SPCCT, CT and HR-CT, respectively. The Dice similarity coefficient was superior for SPCCT throughout nodule shapes and all nodule sizes (mean, SPCCT: 0.90; CT: 0.85; HR-CT: 0.85). 10% MTF improved from 10.1 LP/cm for HR-CT to 21.7 LP/cm for SPCCT. Visual investigation of small pulmonary structures was superior for SPCCT in the animal study. In conclusion, the SPCCT prototype has the potential to improve the assessment of lung structures due to higher resolution compared to conventional CT.


Subject(s)
Lung/diagnostic imaging , Tomography, X-Ray Computed/methods , Animals , Humans , Linear Models , Phantoms, Imaging , Photons , Rabbits
5.
Eur Radiol Exp ; 2(1): 34, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30327898

ABSTRACT

BACKGROUND: To evaluate the feasibility of multicolour quantitative imaging with spectral photon-counting computed tomography (SPCCT) of different mixed contrast agents. METHODS: Phantoms containing eleven tubes with mixtures of varying proportions of two contrast agents (i.e. two selected from gadolinium, iodine or gold nanoparticles) were prepared so that the attenuation of each tube was about 280 HU. Scans were acquired at 120 kVp and 100 mAs using a five-bin preclinical SPCCT prototype, generating conventional, water, iodine, gadolinium and gold images. The correlation between prepared and measured concentrations was assessed using linear regression. The cross-contamination was measured for each material as the root mean square error (RMSE) of its concentration in the other material images, where no signal was expected. The contrast-to-noise ratio (CNR) relative to a phosphate buffered saline tube was calculated for each contrast agent. RESULTS: The solutions had similar attenuations (279 ± 10 HU, mean ± standard deviation) and could not be differentiated on conventional images. However, a distinction was observed in the material images within the same samples, and the measured and prepared concentrations were strongly correlated (R2 ≥ 0.97, 0.81 ≤ slope ≤ 0.95, -0.68 ≤ offset ≤ 0.89 mg/mL). Cross-contamination in the iodine images for the mixture of gold and gadolinium contrast agents (RMSE = 0.34 mg/mL) was observed. CNR for 1 mg/mL of contrast agent was better for the mixture of iodine and gadolinium (CNRiodine = 3.20, CNRgadolinium = 2.80) than gold and gadolinium (CNRgadolinium = 1.67, CNRgold = 1.37). CONCLUSIONS: SPCCT enables multicolour quantitative imaging. As a result, it should be possible to perform imaging of multiple uptake phases of a given tissue/organ within a single scan by injecting different contrast agents sequentially.

6.
Eur Radiol ; 28(8): 3318-3325, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29460069

ABSTRACT

OBJECTIVES: After endovascular aortic repair (EVAR), discrimination of endoleaks and intra-aneurysmatic calcifications within the aneurysm often requires multiphase computed tomography (CT). Spectral photon-counting CT (SPCCT) in combination with a two-contrast agent injection protocol may provide reliable detection of endoleaks with a single CT acquisition. METHODS: To evaluate the feasibility of SPCCT, the stent-lined compartment of an abdominal aortic aneurysm phantom was filled with a mixture of iodine and gadolinium mimicking enhanced blood. To represent endoleaks of different flow rates, the adjacent compartments contained either one of the contrast agents or calcium chloride to mimic intra-aneurysmatic calcifications. After data acquisition with a SPCCT prototype scanner with multi-energy bins, material decomposition was performed to generate iodine, gadolinium and calcium maps. RESULTS: In a conventional CT slice, Hounsfield units (HU) of the compartments were similar ranging from 147 to 168 HU. Material-specific maps differentiate the distributions within the compartments filled with iodine, gadolinium or calcium. CONCLUSION: SPCCT may replace multiphase CT to detect endoleaks without sacrificing diagnostic accuracy. It is a unique feature of our method to capture endoleak dynamics and allow reliable distinction from intra-aneurysmatic calcifications in a single scan, thereby enabling a significant reduction of radiation exposure. KEY POINTS: • SPCCT might enable advanced endoleak detection. • Material maps derived from SPCCT can differentiate iodine, gadolinium and calcium. • SPCCT may potentially reduce radiation burden for EVAR patients under post-interventional surveillance.


Subject(s)
Aortic Aneurysm, Abdominal/surgery , Contrast Media , Endoleak/diagnostic imaging , Endovascular Procedures/methods , Photons , Tomography, X-Ray Computed/methods , Aged , Aged, 80 and over , Feasibility Studies , Female , Gadolinium , Humans , Male , Middle Aged , Phantoms, Imaging , Stents
7.
Sci Rep ; 7(1): 4784, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28684756

ABSTRACT

A new prototype spectral photon-counting computed tomography (SPCCT) based on a modified clinical CT system has been developed. SPCCT analysis of the energy composition of the transmitted x-ray spectrum potentially allows simultaneous dual contrast agent imaging, however, this has not yet been demonstrated with such a system. We investigated the feasibility of using this system to distinguish gold nanoparticles (AuNP) and an iodinated contrast agent. The contrast agents and calcium phosphate were imaged in phantoms. Conventional CT, gold K-edge, iodine and water images were produced and demonstrated accurate discrimination and quantification of gold and iodine concentrations in a phantom containing mixtures of the contrast agents. In vivo experiments were performed using New Zealand White rabbits at several times points after injections of AuNP and iodinated contrast agents. We found that the contrast material maps clearly differentiated the distributions of gold and iodine in the tissues allowing quantification of the contrast agents' concentrations, which matched their expected pharmacokinetics. Furthermore, rapid, repetitive scanning was done, which allowed measurement of contrast agent kinetics with high temporal resolution. In conclusion, a clinical scale, high count rate SPCCT system is able to discriminate gold and iodine contrast media in different organs in vivo.


Subject(s)
Contrast Media/pharmacokinetics , Tomography, X-Ray Computed/methods , Animals , Calcium Phosphates , Female , Gold/pharmacokinetics , Iopamidol/analogs & derivatives , Iopamidol/pharmacokinetics , Male , Metal Nanoparticles , Phantoms, Imaging , Rabbits
8.
Nanoscale ; 9(46): 18246-18257, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-28726968

ABSTRACT

Spectral photon counting computed tomography (SPCCT) is an emerging medical imaging technology. SPCCT scanners record the energy of incident photons, which allows specific detection of contrast agents due to measurement of their characteristic X-ray attenuation profiles. This approach is known as K-edge imaging. Nanoparticles formed from elements such as gold, bismuth or ytterbium have been reported as potential contrast agents for SPCCT imaging. Furthermore, gold nanoparticles have many applications in medicine, such as adjuvants for radiotherapy and photothermal ablation. In particular, longitudinal imaging of the biodistribution of nanoparticles would be highly attractive for their clinical translation. We therefore studied the capabilities of a novel SPCCT scanner to quantify the biodistribution of gold nanoparticles in vivo. PEGylated gold nanoparticles were used. Phantom imaging showed that concentrations measured on gold images correlated well with known concentrations (slope = 0.94, intercept = 0.18, RMSE = 0.18, R2 = 0.99). The SPCCT system allowed repetitive and quick acquisitions in vivo, and follow-up of changes in the AuNP biodistribution over time. Measurements performed on gold images correlated with the inductively coupled plasma-optical emission spectrometry (ICP-OES) measurements in the organs of interest (slope = 0.77, intercept = 0.47, RMSE = 0.72, R2 = 0.93). TEM results were in agreement with the imaging and ICP-OES in that much higher concentrations of AuNPs were observed in the liver, spleen, bone marrow and lymph nodes (mainly in macrophages). In conclusion, we found that SPCCT can be used for repetitive and non-invasive determination of the biodistribution of gold nanoparticles in vivo.


Subject(s)
Gold , Metal Nanoparticles , Tomography, X-Ray Computed , Animals , Photons , Rabbits , Tissue Distribution
9.
Opt Express ; 25(6): 6349-6364, 2017 Mar 20.
Article in English | MEDLINE | ID: mdl-28380987

ABSTRACT

An X-ray grating interferometer (GI) suitable for clinical mammography must comply with quite strict dose, scanning time and geometry limitations, while being able to detect tumors, microcalcifications and other abnormalities. Such a design task is not straightforward, since obtaining optimal phase-contrast and dark-field signals with clinically compatible doses and geometrical constraints is remarkably challenging. In this work, we present a wave propagation based optimization that uses the phase and dark-field sensitivities as figures of merit. This method was used to calculate the optimal interferometer designs for a commercial mammography setup. Its accuracy was validated by measuring the visibility of polycarbonate samples of different thicknesses on a Talbot-Lau interferometer installed on this device and considering some of the most common grating imperfections to be able to reproduce the experimental values. The optimization method outcomes indicate that small grating pitches are required to boost sensitivity in such a constrained setup and that there is a different optimal scenario for each signal type.

10.
Radiology ; 283(3): 723-728, 2017 06.
Article in English | MEDLINE | ID: mdl-27918709

ABSTRACT

Purpose To investigate the feasibility of using spectral photon-counting computed tomography (CT) to differentiate between gadolinium-based and nonionic iodine-based contrast material in a colon phantom by using the characteristic k edge of gadolinium. Materials and Methods A custom-made colon phantom was filled with nonionic iodine-based contrast material, and a gadolinium-filled capsule representing a contrast material-enhanced polyp was positioned on the colon wall. The colon phantom was scanned with a preclinical spectral photon-counting CT system to obtain spectral and conventional data. By fully using the multibin spectral information, material decomposition was performed to generate iodine and gadolinium maps. Quantitative measurements were performed within the lumen and polyp to quantitatively determine the absolute content of iodine and gadolinium. Results In a conventional CT section, absorption values of both contrast agents were similar at approximately 110 HU. Contrast material maps clearly differentiated the distributions, with gadolinium solely in the polyp and iodine in the lumen of the colon. Quantitative measurements of contrast material concentrations in the colon and polyp matched well with those of actual prepared mixtures. Conclusion Dual-contrast spectral photon-counting CT colonography with iodine-filled lumen and gadolinium-tagged polyps may enable ready differentiation between polyps and tagged fecal material. © RSNA, 2016.


Subject(s)
Colonography, Computed Tomographic , Colonography, Computed Tomographic/methods , Contrast Media , Gadolinium , Iodine Compounds , Phantoms, Imaging , Photons
11.
Med Phys ; 43(3): 1295-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26936714

ABSTRACT

PURPOSE: An analytic Fourier approach to predict the expected number of counts registered in a photon-counting detector subject to pulse pile-up for arbitrary photon flux, detector response function, and pulse-shape is presented. The analysis provides a complete forward model for energy-sensitive, photon-counting x-ray detectors for spectral computed tomography. METHODS: The formalism of the stochastic theory of the expected frequency of level crossings of shot noise processes is applied to the pulse pile-up effect and build on a recently published analytic Fourier representation of the level crossing frequency of shot noise processes with piece-wise continuous kernels with jumps. RESULTS: The general analytic result is validated by a Monte Carlo simulation for pulses of the form g(t) = e(-t/τ) (t > 0) and a Gaussian detector response function. The Monte Carlo simulations are in excellent agreement with the analytic predictions of photon counts within the numerical accuracy of the calculations. CONCLUSIONS: The phenomenon of pulse pile-up is identified with the level-crossing problem of shot noise processes and an exact, analytic formula for the expected number of counts in energy-sensitive, photon-counting x-ray detectors for arbitrary photon flux, response function, and pulse-shapes is derived. The framework serves as a theoretical foundation for future works on pulse pile-up.


Subject(s)
Fourier Analysis , Photons , Radiometry/instrumentation , Monte Carlo Method , X-Rays
12.
Med Phys ; 42(4): 1959-65, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25832086

ABSTRACT

PURPOSE: The purpose of this work is to investigate the feasibility of grating-based, differential phase-contrast, full-field digital mammography (FFDM) in terms of the requirements for field-of-view (FOV), mechanical stability, and scan time. METHODS: A rigid, actuator-free Talbot interferometric unit was designed and integrated into a state-of-the-art x-ray slit-scanning mammography system, namely, the Philips MicroDose L30 FFDM system. A dedicated phase-acquisition and phase retrieval method was developed and implemented that exploits the redundancy of the data acquisition inherent to the slit-scanning approach to image generation of the system. No modifications to the scan arm motion control were implemented. RESULTS: The authors achieve a FOV of 160 × 196 mm consisting of two disjoint areas measuring 77 × 196 mm with a gap of 6 mm between them. Typical scanning times vary between 10 and 15 s and dose levels are lower than typical FFDM doses for conventional scans with identical acquisition parameters due to the presence of the source-grating G0. Only minor to moderate artifacts are observed in the three reconstructed images, indicating that mechanical vibrations induced by other system components do not prevent the use of the platform for phase contrast imaging. CONCLUSIONS: To the best of our knowledge, this is the first attempt to integrate x-ray gratings hardware into a clinical mammography unit. The results demonstrate that a scanning differential phase contrast FFDM system that meets the requirements of FOV, stability, scan time, and dose can be build.


Subject(s)
Mammography/instrumentation , Mammography/methods , Animals , Artifacts , Equipment Design , Feasibility Studies , Image Processing, Computer-Assisted/instrumentation , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Radiation Dosage , Sea Bream , Time Factors
13.
Invest Radiol ; 50(4): 297-304, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25551821

ABSTRACT

OBJECTIVES: The objective of this study was to investigate the feasibility and the accuracy of spectral computed tomography (spectral CT) to determine the tissue concentrations and localization of high-attenuation, iodine-based contrast agents in mice. Iodine tissue concentrations determined with spectral CT are compared with concentrations measured with single-photon emission computed tomography (SPECT) and inductively coupled plasma mass spectrometry (ICP-MS). MATERIALS AND METHODS: All animal procedures were performed according to the US National Institutes of Health principles of laboratory animal care and were approved by the ethical review committee of Maastricht, The Netherlands. Healthy Swiss mice (n = 4) were injected with an iodinated emulsion radiolabeled with indium as multimodal contrast agent for CT and SPECT. The CT and SPECT scans were acquired using a dedicated small-animal SPECT/CT system. Subsequently, scans were performed with a preclinical spectral CT scanner equipped with a photon-counting detector and 6 energy threshold levels. Quantitative data analysis of SPECT and spectral CT scans were obtained using 3-dimensional volumes-of-interest drawing methods. The ICP-MS on dissected organs was performed to determine iodine uptake per organ and was compared with the amounts determined from spectral CT and SPECT. RESULTS: Iodine concentrations obtained with image-processed spectral CT data correlated well with data obtained either with noninvasive SPECT imaging (slope = 0.96, r = 0.75) or with ICP-MS (slope = 0.99, r = 0.89) in tissue samples. CONCLUSIONS: This preclinical proof-of-concept study shows the in vivo quantification of iodine concentrations in tissues using spectral CT. Our multimodal imaging approach with spectral CT and SPECT using radiolabeled iodinated emulsions together with ICP-based quantification allows a direct comparison of all methods. Benchmarked against ICP-MS data, spectral CT in the present implementation shows a slight underestimation of organ iodine concentrations compared with SPECT but with a more narrow distribution. This slight deviation is most likely caused by experimental rather than technical issues.


Subject(s)
Contrast Media/pharmacokinetics , Indium Radioisotopes/pharmacokinetics , Phantoms, Imaging , Tomography, X-Ray Computed/methods , Animals , Feasibility Studies , Imaging, Three-Dimensional , Iodine , Mice , Reproducibility of Results , Spectrophotometry, Atomic , Tomography, Emission-Computed, Single-Photon
14.
Contrast Media Mol Imaging ; 9(1): 62-70, 2014.
Article in English | MEDLINE | ID: mdl-24470295

ABSTRACT

Recent developments in spectral CT systems featuring binned photon-counting detector technology have enabled an imaging concept on a pre-clinical level that has been coined K-edge imaging. This exciting concept allows the selective and quantitative imaging of contrast media by exploiting the K-edge discontinuity in the photo-electric component of X-ray absorption. An ideal application for K-edge imaging is CT imaging of target-specific and conventional contrast agents that have been designed to be spectral-CT-visible. Current limitations in detector hardware, however, result in typically high noise levels that hamper the application of K-edge imaging. In order to battle noise and assure sufficient sensitivity, the development of dedicated K-edge contrast media in combination with advanced image processing techniques is imperative. This work attempts a comprehensive overview on how the concert of dedicated contrast media, optimized data acquisition and innovative data processing techniques improve sensitivity of K-edge imaging which will foster clinical translation of the technology.


Subject(s)
Contrast Media , Image Processing, Computer-Assisted , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Absorption , Algorithms , Humans , Phantoms, Imaging , Photons
15.
Philos Trans A Math Phys Eng Sci ; 372(2010): 20130033, 2014 Mar 06.
Article in English | MEDLINE | ID: mdl-24470415

ABSTRACT

Research in grating-based differential phase-contrast imaging (DPCI) has gained increasing momentum in the past couple of years. The first results on the potential clinical benefits of the technique for X-ray mammography are becoming available and indicate improvements in terms of general image quality, the delineation of lesions versus the background tissue and the visibility of microcalcifications. In this paper, we investigate some aspects related to the technical feasibility of DPCI for human X-ray mammography. After a short introduction to state-of-the-art full-field digital mammography in terms of technical aspects as well as clinical aspects, we put together boundary conditions for DPCI. We then discuss the implications for system design in a comparative manner for systems with two-dimensional detectors versus slit-scanning systems, stating advantages and disadvantages of the two designs. Finally, focusing on a slit-scanning system, we outline a possible concept for phase acquisition.


Subject(s)
Mammography/methods , Hot Temperature , Humans , Image Processing, Computer-Assisted , Interferometry , Mammography/instrumentation , Mastectomy , Movement , Radiation Dosage , Radiographic Image Enhancement , Time Factors
16.
Invest Radiol ; 49(3): 131-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24141742

ABSTRACT

OBJECTIVES: Differential phase contrast and scattering-based x-ray mammography has the potential to provide additional and complementary clinically relevant information compared with absorption-based mammography. The purpose of our study was to provide a first statistical evaluation of the imaging capabilities of the new technique compared with digital absorption mammography. MATERIALS AND METHODS: We investigated non-fixed mastectomy samples of 33 patients with invasive breast cancer, using grating-based differential phase contrast mammography (mammoDPC) with a conventional, low-brilliance x-ray tube. We simultaneously recorded absorption, differential phase contrast, and small-angle scattering signals that were combined into novel high-frequency-enhanced images with a dedicated image fusion algorithm. Six international, expert breast radiologists evaluated clinical digital and experimental mammograms in a 2-part blinded, prospective independent reader study. The results were statistically analyzed in terms of image quality and clinical relevance. RESULTS: The results of the comparison of mammoDPC with clinical digital mammography revealed the general quality of the images to be significantly superior (P < 0.001); sharpness, lesion delineation, as well as the general visibility of calcifications to be significantly more assessable (P < 0.001); and delineation of anatomic components of the specimens (surface structures) to be significantly sharper (P < 0.001). Spiculations were significantly better identified, and the overall clinically relevant information provided by mammoDPC was judged to be superior (P < 0.001). CONCLUSIONS: Our results demonstrate that complementary information provided by phase and scattering enhanced mammograms obtained with the mammoDPC approach deliver images of generally superior quality. This technique has the potential to improve radiological breast diagnostics.


Subject(s)
Algorithms , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Mammography/methods , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Adult , Aged , Aged, 80 and over , Feasibility Studies , Female , Humans , In Vitro Techniques , Male , Mastectomy , Middle Aged , Observer Variation , Reproducibility of Results , Sensitivity and Specificity
17.
IEEE Trans Med Imaging ; 32(7): 1249-57, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23475351

ABSTRACT

Photon-counting detector technology has enabled the first experimental investigations of energy-resolved computed tomography (CT) imaging and the potential use for K-edge imaging. However, limitations in regards to detecter technology have been imposing a limit to effective count rates. As a consequence, this has resulted in high noise levels in the obtained images given scan time limitations in CT imaging applications. It has been well recognized in the area of low-dose imaging with conventional CT that iterative image reconstruction provides a superior signal to noise ratio compared to traditional filtered backprojection techniques. Furthermore, iterative reconstruction methods also allow for incorporation of a roughness penalty function in order to make a trade-off between noise and spatial resolution in the reconstructed images. In this work, we investigate statistically-principled iterative image reconstruction from material-decomposed sinograms in spectral CT. The proposed reconstruction algorithm seeks to minimize a penalized likelihood-based cost functional, where the parameters of the likelihood function are estimated by computing the Fisher information matrix associated with the material decomposition step. The performance of the proposed reconstruction method is quantitatively investigated by use of computer-simulated and experimental phantom data. The potential for improved K-edge imaging is also demonstrated in an animal experiment.


Subject(s)
Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Algorithms , Animals , Computer Simulation , Mice , Monte Carlo Method , Normal Distribution , Phantoms, Imaging
18.
J Mater Chem ; 22(43): 23071-23077, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-23185109

ABSTRACT

Spectral CT is the newest advancement in CT imaging technology, which enhances traditional CT images with the capability to image and quantify certain elements based on their distinctive K-edge energies. K-edge imaging feature recognizes high accumulations of targeted elements and presents them as colorized voxels against the normal grayscale X-ray background offering promise to overcome the relatively low inherent contrast within soft tissue and distinguish the high attenuation of calcium from contrast enhanced targets. Towards this aim, second generation gold nanobeacons (GNB(2)), which incorporate at least five times more metal than the previous generation was developed. The particles were synthesized as lipid-encapsulated, vascularly constrained (>120 nm) nanoparticle incorporating tiny gold nanoparticles (2-4 nm) within a polysorbate core. The choice of core material dictated to achieve a higher metal loading. The particles were thoroughly characterized by physicochemical techniques. This study reports one of the earlier examples of spectral CT imaging with gold nanoparticles demonstrating the potential for targeted in vitro and in vivo imaging and eliminates calcium interference with CT. The use of statistical image reconstruction shows high SNR may allow dose reduction and/or faster scan times.

19.
Invest Radiol ; 47(8): 475-81, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22766909

ABSTRACT

PURPOSE: Gold nanoparticles (gold-NPs) have lately been proposed as alternative contrast agents to iodine-based contrast agents (iodine-CA) for computed tomography (CT) angiography. The aims of this study were to confirm an appropriate environment in which to evaluate such novel contrast agents, to investigate the comparative contrast of iodine-CA versus gold-NP, and to determine optimal scanning parameters for gold-NP. MATERIALS AND METHODS: Three different clinical scanners were used to acquire CT images. A range of concentrations (10 mM to 1.5 M) of gold-NP and iodine-CA were scanned with varying x-ray tube voltages and currents, reconstruction kernels, protocols, and scanner models. The different environments investigated were air, water, and water with a bone simulant (Ca3(PO4)2). Regression coefficients were derived from the attenuation values plotted against concentration and compared for statistical significance using t values. RESULTS: As expected, contrast was linearly related to concentrations up to 500 to 1000 mM, depending on the conditions used, whereupon a plateau of 3000 Hounsfield units was reached. Attenuation was significantly different depending on the environment used (air, water, or water and bone simulant). Contrast is dependent on the x-ray tube voltage used, with the contrast produced from iodine-CA sharply declining with increasing voltage, whereas the contrast of gold-NP varied less with tube voltage but was maximal at 120 kV in water with bone simulant. Current, reconstruction kernels, protocols, and scanner model had less effect on contrast. CONCLUSION: Water with a bone simulant is a preferable environment for evaluating novel cardiac CT contrast agents. Relative iodine-CA versus gold-NP contrast is dependent on the scanning conditions used. Optimal scanning conditions for gold-NP will likely use an x-ray tube voltage of 120 kV.


Subject(s)
Contrast Media , Gold Compounds , Iodine Compounds , Nanoparticles , Tomography, X-Ray Computed/methods , Angiography/methods , Clinical Protocols , Humans , Phantoms, Imaging
20.
ACS Nano ; 6(4): 3364-70, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22385324

ABSTRACT

We report a novel molecular imaging agent based on ytterbium designed for use with spectral "multicolor" computed tomography (CT). Spectral CT or multicolored CT provides all of the benefits of traditional CT, such as rapid tomographic X-ray imaging, but in addition, it simultaneously discriminates metal-rich contrast agents based on the element's unique X-ray K-edge energy signature. Our synthetic approach involved the use of organically soluble Yb(III) complex to produce nanocolloids of Yb of noncrystalline nature incorporating a high density of Yb (>500K/nanoparticle) into a stable metal particle. The resultant particles are constrained to vasculature (∼200 nm) and are highly selective for binding fibrin in the ruptured atherosclerotic plaque. Nanoparticles exhibited excellent signal sensitivity, and the spectral CT technique uniquely discriminates the K-edge signal (60 keV) of Yb from calcium (bones). Bioelimination and preliminary biodistribution reflected the overall safety and defined clearance of these particles in a rodent model.


Subject(s)
Nanostructures , Tomography, X-Ray Computed/methods , Ytterbium/chemistry , Animals , Capsules , Colloids , Color , Hydrophobic and Hydrophilic Interactions , Mice , Spectrum Analysis , Ytterbium/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...