Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39064811

ABSTRACT

(1) Background: Dyslipidemia represents a major risk factor for atherosclerosis-driven cardiovascular disease. Emerging evidence suggests a close relationship between cholesterol metabolism and gut microbiota. Recently, we demonstrated that the short-chain fatty acid (SCFA) propionate (PA) reduces serum cholesterol levels through an immunomodulatory mechanism. Here, we investigated the effects of oral PA supplementation on the human serum metabolome and analyzed changes in the serum metabolome in relation to the cholesterol-lowering properties of PA. (2) Methods: The serum metabolome of patients supplemented with either placebo or propionate orally for 8 weeks was assessed using a combination of flow injection analysis-tandem (FIA-MS/MS) as well as liquid chromatography (LC-MS/MS) and mass spectrometry using a targeted metabolomics kit (MxP®Quant 500 kit: BIOCRATES Life Sciences AG, Innsbruck, Austria). A total of 431 metabolites were employed for further investigation in this study. (3) Results: We observed a significant increase in distinct bile acids (GCDCA: fold change = 1.41, DCA: fold change = 1.39, GUDCA: fold change = 1.51) following PA supplementation over the study period, with the secondary bile acid DCA displaying a significant negative correlation with the serum cholesterol levels. (4) Conclusions: Oral supplementation with PA modulates the serum metabolome with a particular impact on the circulatory bile acid profile. Since cholesterol and bile acid metabolism are interconnected, the elevation of the secondary bile acid DCA may contribute to the cholesterol-lowering effect of PA.


Subject(s)
Cholesterol , Metabolome , Propionates , Humans , Propionates/blood , Metabolome/drug effects , Male , Female , Cholesterol/blood , Middle Aged , Bile Acids and Salts/blood , Bile Acids and Salts/metabolism , Dietary Supplements , Adult , Tandem Mass Spectrometry , Anticholesteremic Agents/pharmacology , Metabolomics/methods , Double-Blind Method , Aged , Chromatography, Liquid
2.
Atherosclerosis ; 359: 1-12, 2022 10.
Article in English | MEDLINE | ID: mdl-36126379

ABSTRACT

Accumulating evidence suggests an important role of gut microbiota in physiological processes of host metabolism as well as cardiometabolic disease. Recent advances in metagenomic and metabolomic research have led to discoveries of novel pathways in which intestinal microbial metabolism of dietary nutrients is linked to metabolic profiles and cardiovascular disease risk. A number of metaorganismal circuits have been identified by microbiota transplantation studies and experimental models using germ-free rodents. Many of these pathways involve gut microbiota-related bioactive metabolites that impact host metabolism, in particular lipid and glucose homeostasis, partly via specific host receptors. In this review, we summarize the current knowledge of how the gut microbiome can impact cardiometabolic phenotypes and provide an overview of recent advances of gut microbiome research. Finally, the potential of modulating intestinal microbiota composition and/or targeting microbiota-related pathways for novel preventive and therapeutic strategies in cardiometabolic and cardiovascular diseases will be discussed.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Gastrointestinal Microbiome , Cardiovascular Diseases/metabolism , Cholesterol/metabolism , Glucose/metabolism , Humans
3.
Eur Heart J ; 43(6): 518-533, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34597388

ABSTRACT

AIMS: Atherosclerotic cardiovascular disease (ACVD) is a major cause of mortality and morbidity worldwide, and increased low-density lipoproteins (LDLs) play a critical role in development and progression of atherosclerosis. Here, we examined for the first time gut immunomodulatory effects of the microbiota-derived metabolite propionic acid (PA) on intestinal cholesterol metabolism. METHODS AND RESULTS: Using both human and animal model studies, we demonstrate that treatment with PA reduces blood total and LDL cholesterol levels. In apolipoprotein E-/- (Apoe-/-) mice fed a high-fat diet (HFD), PA reduced intestinal cholesterol absorption and aortic atherosclerotic lesion area. Further, PA increased regulatory T-cell numbers and interleukin (IL)-10 levels in the intestinal microenvironment, which in turn suppressed the expression of Niemann-Pick C1-like 1 (Npc1l1), a major intestinal cholesterol transporter. Blockade of IL-10 receptor signalling attenuated the PA-related reduction in total and LDL cholesterol and augmented atherosclerotic lesion severity in the HFD-fed Apoe-/- mice. To translate these preclinical findings to humans, we conducted a randomized, double-blinded, placebo-controlled human study (clinical trial no. NCT03590496). Oral supplementation with 500 mg of PA twice daily over the course of 8 weeks significantly reduced LDL [-15.9 mg/dL (-8.1%) vs. -1.6 mg/dL (-0.5%), P = 0.016], total [-19.6 mg/dL (-7.3%) vs. -5.3 mg/dL (-1.7%), P = 0.014] and non-high-density lipoprotein cholesterol levels [PA vs. placebo: -18.9 mg/dL (-9.1%) vs. -0.6 mg/dL (-0.5%), P = 0.002] in subjects with elevated baseline LDL cholesterol levels. CONCLUSION: Our findings reveal a novel immune-mediated pathway linking the gut microbiota-derived metabolite PA with intestinal Npc1l1 expression and cholesterol homeostasis. The results highlight the gut immune system as a potential therapeutic target to control dyslipidaemia that may introduce a new avenue for prevention of ACVDs.


Subject(s)
Atherosclerosis , Propionates , Animals , Apolipoproteins E/metabolism , Atherosclerosis/etiology , Cholesterol/metabolism , Cholesterol, LDL/metabolism , Humans , Intestinal Absorption , Mice , Mice, Inbred C57BL , Mice, Knockout , Propionates/pharmacology , Propionates/therapeutic use
4.
J Clin Med ; 9(5)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466086

ABSTRACT

BACKGROUND AND AIMS: The mechanisms of interindividual variation of lipid regulation by statins, such as the low-density lipoprotein cholesterol (LDL) lowering effects, are not fully understood yet. Here, we used a gut microbiota depleted mouse model to investigate the relation between the gut microbiota and the regulatory property of atorvastatin on blood lipids. METHODS: Mice (C57BL/6) with intact gut microbiota or antibiotic induced abiotic mice (ABS) were put on standard chow diet (SCD) or high fat diet (HFD) for six weeks. Atorvastatin (10 mg/kg body weight/day) or a control vehicle were applied per gavage for the last four weeks of dietary treatment. Blood lipids including total cholesterol, very low-density lipoprotein, low-density lipoprotein, high-density lipoprotein and sphingolipids were measured to probe microbiota-dependent effects of atorvastatin. The expression of genes involved in hepatic and intestinal cholesterol metabolism was analyzed with qRT-PCR. The alteration of the microbiota profile was examined using 16S rRNA qPCR in mice with intact gut microbiota. RESULTS: HFD feeding significantly increased total blood cholesterol and LDL levels, as compared to SCD in both mice with intact and depleted gut microbiota. The cholesterol lowering effect of atorvastatin was significantly attenuated in mice with depleted gut microbiota. Moreover, we observed a global shift in the abundance of several sphingolipids upon atorvastatin treatment which was absent in gut microbiota depleted mice. The regulatory effect of atorvastatin on the expression of distinct hepatic and intestinal cholesterol-regulating genes, including Ldlr, Srebp2 and Npc1l1 was altered upon depletion of gut microbiota. In response to HFD feeding, the relative abundance of the bacterial phyla Bacteroidetes decreased, while the abundance of Firmicutes increased. The altered ratio between Firmicutes to Bacteroidetes was partly reversed in HFD fed mice treated with atorvastatin. CONCLUSIONS: Our findings support a regulatory impact of atorvastatin on the gut microbial profile and, in turn, demonstrate a crucial role of the gut microbiome for atorvastatin-related effects on blood lipids. These results provide novel insights into potential microbiota-dependent mechanisms of lipid regulation by statins, which may account for variable response to statin treatment.

SELECTION OF CITATIONS
SEARCH DETAIL