Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Neurobiol Aging ; 144: 138-152, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39357455

ABSTRACT

We aimed to examine the white matter changes associated with lexical production difficulties, beginning in midlife with increased naming latencies. To delay lexical production decline, middle-aged adults may rely on domain-general and language-specific compensatory mechanisms proposed by the LARA model (Lexical Access and Retrieval in Aging). However, the white matter changes supporting these mechanisms remains largely unknown. Using data from the CAMCAN cohort, we employed an unsupervised and data-driven methodology to examine the relationships between diffusion-weighted imaging and lexical production. Our findings indicate that midlife is marked by alterations in brain structure within distributed dorsal, ventral, and anterior cortico-subcortical networks, marking the onset of lexical production decline around ages 53-54. Middle-aged adults may initially adopt a "semantic strategy" to compensate for lexical production challenges, but this strategy seems compromised later (ages 55-60) as semantic control declines. These insights underscore the interplay between domain-general and language-specific processes in the trajectory of lexical production performance in healthy aging and hint at potential biomarkers for language-related neurodegenerative pathologies.

2.
Top Cogn Sci ; 2024 May 12.
Article in English | MEDLINE | ID: mdl-38734967

ABSTRACT

As people age, there is a natural decline in cognitive functioning and brain structure. However, the relationship between brain function and cognition in older adults is neither straightforward nor uniform. Instead, it is complex, influenced by multiple factors, and can vary considerably from one person to another. Reserve, compensation, and maintenance mechanisms may help explain why some older adults can maintain high levels of performance while others struggle. These mechanisms are often studied concerning memory and executive functions that are particularly sensitive to the effects of aging. However, language abilities can also be affected by age, with changes in production fluency. The impact of brain changes on language abilities needs to be further investigated to understand the dynamics and patterns of aging, especially successful aging. We previously modeled several compensatory profiles of language production and lexical access/retrieval in aging within the Lexical Access and Retrieval in Aging (LARA) model. In the present paper, we propose an extended version of the LARA model, called LARA-Connectivity (LARA-C), incorporating recent evidence on brain connectivity. Finally, we discuss factors that may influence the strategies implemented with aging. The LARA-C model can serve as a framework to understand individual performance and open avenues for possible personalized interventions.

3.
Can J Aging ; : 1-3, 2024 Mar 13.
Article in French | MEDLINE | ID: mdl-38476013

ABSTRACT

Chaque année, les Instituts de recherche en santé du Canada (IRSC) subventionnent le Programme d'été sur le vieillissement (PEV). Cette année, la semaine de formation qui rassemblait des étudiants canadiens de tous les cycles supérieurs avait pour thème la recherche multidisciplinaire au quatrième âge. Cette note de recherche présente trois éléments de réflexion de deux participants de l'édition 2023 du PEV : 1) les enjeux liés au vieillissement sont des occasions de transformer les paradigmes de la recherche; 2) la recherche collaborative doit être sociétale, et s'étendre au-delà du cercle restreint des milieux universitaires; 3) les critères d'équité, de diversité et d'inclusion intégrés aux projets de recherche doivent se refléter au sein des organisations qui mènent la recherche.

4.
bioRxiv ; 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38106059

ABSTRACT

Aging engenders neuroadaptations, generally reducing specificity and selectivity in functional brain responses. Our investigation delves into the functional specialization of brain hemispheres within language-related networks across adulthood. In a cohort of 728 healthy adults spanning ages 18 to 88, we modeled the trajectories of inter-hemispheric asymmetry concerning the principal functional gradient across 37 homotopic regions of interest (hROIs) of an extensive language network, known as the Language-and-Memory Network. Our findings reveal that over two-thirds of Language-and-Memory Network hROIs undergo asymmetry changes with age, falling into two main clusters. The first cluster evolves from left-sided specialization to right-sided tendencies, while the second cluster transitions from right-sided asymmetry to left-hemisphere dominance. These reversed asymmetry shifts manifest around midlife, occurring after age 50, and are associated with poorer language production performance. Our results provide valuable insights into the influence of functional brain asymmetries on language proficiency and present a dynamic perspective on brain plasticity during the typical aging process.

5.
Neurosci Biobehav Rev ; 133: 104489, 2022 02.
Article in English | MEDLINE | ID: mdl-34929226

ABSTRACT

The field of neurocognition is currently undergoing a significant change of perspective. Traditional neurocognitive models evolved into an integrative and dynamic vision of cognitive functioning. Dynamic integration assumes an interaction between cognitive domains traditionally considered to be distinct. Language and declarative memory are regarded as separate functions supported by different neural systems. However, they also share anatomical structures (notably, the inferior frontal gyrus, the supplementary motor area, the superior and middle temporal gyrus, and the hippocampal complex) and cognitive processes (such as semantic and working memory) that merge to endorse our quintessential daily lives. We propose a new model, "L∪M" (i.e., Language/union/Memory), that considers these two functions interactively. We fractionated language and declarative memory into three fundamental dimensions or systems ("Receiver-Transmitter", "Controller-Manager" and "Transformer-Associative" Systems), that communicate reciprocally. We formalized their interactions at the brain level with a connectivity-based approach. This new taxonomy overcomes the modular view of cognitive functioning and reconciles functional specialization with plasticity in neurological disorders.


Subject(s)
Language , Magnetic Resonance Imaging , Brain , Brain Mapping , Humans , Semantics , Temporal Lobe
6.
Epilepsy Behav ; 124: 108357, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34717247

ABSTRACT

By assessing the cognitive capital, neuropsychological evaluation (NPE) plays a vital role in the perioperative workup of patients with refractory focal epilepsy. In this retrospective study, we used cutting-edge statistical approaches to examine a group of 47 patients with refractory temporal lobe epilepsy (TLE), who underwent standard anterior temporal lobectomy (ATL). Our objective was to determine whether NPE may represent a robust predictor of the postoperative status, two years after surgery. Specifically, based on pre- and postsurgical neuropsychological data, we estimated the sensitivity of cognitive indicators to predict and to disentangle phenotypes associated with more or less favorable outcomes. Engel (ENG) scores were used to assess clinical outcome, and picture naming (NAM) performance to estimate naming status. Two methods were applied: (a) machine learning (ML) to explore cognitive sensitivity to postoperative outcomes; and (b) graph theory (GT) to assess network properties reflecting favorable vs. less favorable phenotypes after surgery. Specific neuropsychological indices assessing language, memory, and executive functions can globally predict outcomes. Interestingly, preoperative cognitive networks associated with poor postsurgical outcome already exhibit an atypical, highly modular and less densely interconnected configuration. We provide statistical and clinical tools to anticipate the condition after surgery and achieve a more personalized clinical management. Our results also shed light on possible mechanisms put in place for cognitive adaptation after acute injury of central nervous system in relation with surgery.

7.
Neuroimage Clin ; 31: 102702, 2021.
Article in English | MEDLINE | ID: mdl-34090125

ABSTRACT

Current theoretical frameworks suggest that human behaviors are based on strong and complex interactions between cognitive processes such as those underlying language and memory functions in normal and neurological populations. We were interested in assessing the dynamic cerebral substrate of such interaction between language and declarative memory, as the composite function, in healthy controls (HC, N = 19) and patients with temporal lobe epilepsy (TLE, N = 16). Our assumption was that the language and declarative memory integration is based on a language-and-memory network (LMN) that is dynamic and reconfigures according to task demands and brain status. Therefore, we explored two types of LMN dynamics, a state reconfiguration (intrinsic resting-state compared to extrinsic state assessed with a sentence recall task) and a reorganization of state reconfiguration (TLE compared to HC). The dynamics was evaluated in terms of segregation (community or module detection) and integration (connector hubs). In HC, the level of segregation was the same in both states and the mechanism of LMN state reconfiguration was shown through module change of key language and declarative memory regions with integrative roles. In TLE patients, the reorganization of LMN state reconfiguration was reflected in segregation increase and extrinsic modules that were based on shorter-distance connections. While lateral and mesial temporal regions enabled state reconfiguration in HC, these regions showed reduced flexibility in TLE. We discuss our results in a connectomic perspective and propose a dynamic model of language and declarative memory functioning. We claim that complex and interactive cognitive functions, such as language and declarative memory, should be investigated dynamically, considering the interaction between cognitive networks.


Subject(s)
Connectome , Epilepsy, Temporal Lobe , Healthy Volunteers , Humans , Language , Magnetic Resonance Imaging
8.
Geroscience ; 43(4): 1725-1765, 2021 08.
Article in English | MEDLINE | ID: mdl-33970414

ABSTRACT

In the absence of any neuropsychiatric condition, older adults may show declining performance in several cognitive processes and among them, in retrieving and producing words, reflected in slower responses and even reduced accuracy compared to younger adults. To overcome this difficulty, healthy older adults implement compensatory strategies, which are the focus of this paper. We provide a review of mainstream findings on deficient mechanisms and possible neurocognitive strategies used by older adults to overcome the deleterious effects of age on lexical production. Moreover, we present findings on genetic and lifestyle factors that might either be protective or risk factors of cognitive impairment in advanced age. We propose that "aging-modulating factors" (AMF) can be modified, offering prevention opportunities against aging effects. Based on our review and this proposition, we introduce an integrative neurocognitive model of mechanisms and compensatory strategies for lexical production in older adults (entitled Lexical Access and Retrieval in Aging, LARA). The main hypothesis defended in LARA is that cognitive aging evolves heterogeneously and involves complementary domain-general and domain-specific mechanisms, with substantial inter-individual variability, reflected at behavioral, cognitive, and brain levels. Furthermore, we argue that the ability to compensate for the effect of cognitive aging depends on the amount of reserve specific to each individual which is, in turn, modulated by the AMF. Our conclusion is that a variety of mechanisms and compensatory strategies coexist in the same individual to oppose the effect of age. The role of reserve is pivotal for a successful coping with age-related changes and future research should continue to explore the modulating role of AMF.


Subject(s)
Cognitive Reserve , Age Factors , Brain
9.
Neuroimage ; 233: 117927, 2021 06.
Article in English | MEDLINE | ID: mdl-33689863

ABSTRACT

Deep learning-based convolutional neural networks have recently proved their efficiency in providing fast segmentation of major brain fascicles structures, based on diffusion-weighted imaging. The quantitative analysis of brain fascicles then relies on metrics either coming from the tractography process itself or from each voxel along the bundle. Statistical detection of abnormal voxels in the context of disease usually relies on univariate and multivariate statistics models, such as the General Linear Model (GLM). Yet in the case of high-dimensional low sample size data, the GLM often implies high standard deviation range in controls due to anatomical variability, despite the commonly used smoothing process. This can lead to difficulties to detect subtle quantitative alterations from a brain bundle at the voxel scale. Here we introduce TractLearn, a unified framework for brain fascicles quantitative analyses by using geodesic learning as a data-driven learning task. TractLearn allows a mapping between the image high-dimensional domain and the reduced latent space of brain fascicles using a Riemannian approach. We illustrate the robustness of this method on a healthy population with test-retest acquisition of multi-shell diffusion MRI data, demonstrating that it is possible to separately study the global effect due to different MRI sessions from the effect of local bundle alterations. We have then tested the efficiency of our algorithm on a sample of 5 age-matched subjects referred with mild traumatic brain injury. Our contributions are to propose: 1/ A manifold approach to capture controls variability as standard reference instead of an atlas approach based on a Euclidean mean. 2/ A tool to detect global variation of voxels' quantitative values, which accounts for voxels' interactions in a structure rather than analyzing voxels independently. 3/ A ready-to-plug algorithm to highlight nonlinear variation of diffusion MRI metrics. With this regard, TractLearn is a ready-to-use algorithm for precision medicine.


Subject(s)
Brain/diagnostic imaging , Data Analysis , Diffusion Magnetic Resonance Imaging/methods , Machine Learning , Neural Networks, Computer , Adolescent , Brain/physiology , Brain Concussion/diagnostic imaging , Brain Concussion/physiopathology , Cohort Studies , Humans , Male , Young Adult
10.
Front Hum Neurosci ; 15: 752138, 2021.
Article in English | MEDLINE | ID: mdl-35069148

ABSTRACT

Preoperative mapping of language and declarative memory functions in temporal lobe epilepsy (TLE) patients is essential since they frequently encounter deterioration of these functions and show variable degrees of cerebral reorganization. Due to growing evidence on language and declarative memory interdependence at a neural and neuropsychological level, we propose the GE2REC protocol for interactive language-and-memory network (LMN) mapping. GE2REC consists of three inter-related tasks, sentence generation with implicit encoding (GE) and two recollection (2REC) memory tasks: recognition and recall. This protocol has previously been validated in healthy participants, and in this study, we showed that it also maps the LMN in the left TLE (N = 18). Compared to healthy controls (N = 19), left TLE (LTLE) showed widespread inter- and intra-hemispheric reorganization of the LMN through reduced activity of regions engaged in the integration and the coordination of this meta-network. We also illustrated how this protocol could be implemented in clinical practice individually by presenting two case studies of LTLE patients who underwent efficient surgery and became seizure-free but showed different cognitive outcomes. This protocol can be advantageous for clinical practice because it (a) is short and easy to perform; (b) allows brain mapping of essential cognitive functions, even at an individual level; (c) engages language-and-memory interaction allowing to evaluate the integrative processes within the LMN; (d) provides a more comprehensive assessment by including both verbal and visual modalities, as well as various language and memory processes. Based on the available postsurgical data, we presented preliminary results obtained with this protocol in LTLE patients that could potentially inform the clinical practice. This implies the necessity to further validate the potential of GE2REC for neurosurgical planning, along with two directions, guiding resection and describing LMN neuroplasticity at an individual level.

SELECTION OF CITATIONS
SEARCH DETAIL