Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Allergy Clin Immunol ; 153(4): 924-938, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373475

ABSTRACT

Evolution has created complex mechanisms to sense environmental danger and protect tissues, with the nervous and immune systems playing pivotal roles. These systems work together, coordinating local and systemic reflexes to restore homeostasis in response to tissue injury and infection. By sharing receptors and ligands, they influence the pathogenesis of various diseases. Recently, a less-explored aspect of neuroimmune communication has emerged: the release of neuropeptides from immune cells and cytokines/chemokines from sensory neurons. This article reviews evidence of this unique neuroimmune interplay and its impact on the development of allergy, inflammation, itch, and pain. We highlight the effects of this neuroimmune signaling on vital processes such as host defense, tissue repair, and inflammation resolution, providing avenues for exploration of the underlying mechanisms and therapeutic potential of this signaling.


Subject(s)
Cytokines , Sensory Receptor Cells , Humans , Signal Transduction , Inflammation , Neuroimmunomodulation/physiology
3.
Life Sci Alliance ; 6(12)2023 12.
Article in English | MEDLINE | ID: mdl-37833072

ABSTRACT

The tumor microenvironment is a dynamic network of stromal, cancer, and immune cells that interact and compete for resources. We have previously identified the Vanin1 pathway as a tumor suppressor of sarcoma development via vitamin B5 and coenzyme A regeneration. Using an aggressive sarcoma cell line that lacks Vnn1 expression, we showed that the administration of pantethine, a vitamin B5 precursor, attenuates tumor growth in immunocompetent but not nude mice. Pantethine boosts antitumor immunity, including the polarization of myeloid and dendritic cells towards enhanced IFNγ-driven antigen presentation pathways and improved the development of hypermetabolic effector CD8+ T cells endowed with potential antitumor activity. At later stages of treatment, the effect of pantethine was limited by the development of immune cell exhaustion. Nevertheless, its activity was comparable with that of anti-PD1 treatment in sensitive tumors. In humans, VNN1 expression correlates with improved survival and immune cell infiltration in soft-tissue sarcomas, but not in osteosarcomas. Pantethine could be a potential therapeutic immunoadjuvant for the development of antitumor immunity.


Subject(s)
CD8-Positive T-Lymphocytes , Sarcoma , Humans , Mice , Animals , Coenzyme A/pharmacology , Pantothenic Acid/pharmacology , Sarcoma/drug therapy , Tumor Microenvironment
4.
Genes (Basel) ; 13(10)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36292599

ABSTRACT

Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the TNF ligand family involved in various diseases including brain inflammatory pathologies such as multiple sclerosis. It has been demonstrated that TWEAK can induce cerebrovascular permeability in an in vitro model of the blood-brain barrier. The molecular mechanisms playing a role in TWEAK versus TNFα signaling on cerebral microvascular endothelial cells are not well defined. Therefore, we aimed to identify gene expression changes in cultures of human brain microvascular endothelial cells (hCMEC/D3) to address changes initiated by TWEAK exposure. Taken together, our studies highlighted that gene involved in leukocyte extravasation, notably claudin-5, were differentially modulated by TWEAK and TNFα. We identified differential gene expression of hCMEC/D3 cells at three timepoints following TWEAK versus TNFα stimulation and also found distinct modulations of several canonical pathways including the actin cytoskeleton, vascular endothelial growth factor (VEGF), Rho family GTPases, and phosphatase and tensin homolog (PTEN) pathways. To our knowledge, this is the first study to interrogate and compare the effects of TWEAK versus TNFα on gene expression in brain microvascular endothelial cells.


Subject(s)
Multiple Sclerosis , Tumor Necrosis Factor-alpha , Humans , Brain , Claudin-5 , Cytokines , Endothelial Cells , GTP Phosphohydrolases , Ligands , Multiple Sclerosis/genetics , Phosphoric Monoester Hydrolases , Tensins , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/pharmacology , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factors
5.
Curr Opin Immunol ; 77: 102212, 2022 08.
Article in English | MEDLINE | ID: mdl-35644113

ABSTRACT

With its unique structure and large numbers of immune cells, the skin is one of the body's first lines of defense against attacks from the environment. It is also innervated by a dense meshwork of primary sensory neurons, including nociceptive fibers specializing in the detection and transduction of harmful stimuli that can elicit pain. This tissue is, therefore, a key organ for studies of neuroimmune interactions and their impact on the host response to environmental challenges. Neuroimmune crosstalk in the skin is crucial for the regulation of inflammation, tissue repair, and host defense against pathogens. A better understanding of this regulation would facilitate the identification of new molecular targets for the treatment of skin diseases.


Subject(s)
Sensory Receptor Cells , Skin , Humans , Inflammation , Neuroimmunomodulation/physiology , Pain , Sensory Receptor Cells/physiology
6.
Nutrients ; 13(8)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34444929

ABSTRACT

Large portion sizes can make children overeat, alter their self-regulation abilities and induce weight gain. However, little is known about how parents determine portion sizes for their children. Using semi-structured interviews with 5 fathers and 32 mothers of pre-schoolers, this study examined French parents' food portioning practices. The division of responsibility between parent and child in deciding portion sizes was explored, as well as the influencing factors and possible sources of information. Parents described a wide range of practices. For most, determining portion sizes is an intuitive action that depends on habits and mainly arises from experiences with feeding their child and his/her appetitive traits. Few parents grant autonomy to their child for portioning and serving food, especially for the first serving. Many influencing factors were identified, including child-related (e.g., appetite, food preferences), parent-related (e.g., avoiding food waste), and external factors (e.g., influence of siblings, French food culture). Most parents do not search for information/recommendations to guide their practices. Stimulating optimal self-regulation of eating in children is important and parents can play a crucial role in this. This study identified barriers and facilitators to guide parents in providing appropriate portion sizes and help include children in this decision process.


Subject(s)
Food Preferences/psychology , Parent-Child Relations , Parents/psychology , Portion Size/psychology , Social Responsibility , Adult , Child, Preschool , Decision Making , Female , France , Humans , Male , Qualitative Research
7.
Nature ; 594(7861): 94-99, 2021 06.
Article in English | MEDLINE | ID: mdl-34012116

ABSTRACT

Inflammation is a defence response to tissue damage that requires tight regulation in order to prevent impaired healing. Tissue-resident macrophages have a key role in tissue repair1, but the precise molecular mechanisms that regulate the balance between inflammatory and pro-repair macrophage responses during healing remain poorly understood. Here we demonstrate a major role for sensory neurons in promoting the tissue-repair function of macrophages. In a sunburn-like model of skin damage in mice, the conditional ablation of sensory neurons expressing the Gαi-interacting protein (GINIP) results in defective tissue regeneration and in dermal fibrosis. Elucidation of the underlying molecular mechanisms revealed a crucial role for the neuropeptide TAFA4, which is produced in the skin by C-low threshold mechanoreceptors-a subset of GINIP+ neurons. TAFA4 modulates the inflammatory profile of macrophages directly in vitro. In vivo studies in Tafa4-deficient mice revealed that TAFA4 promotes the production of IL-10 by dermal macrophages after UV-induced skin damage. This TAFA4-IL-10 axis also ensures the survival and maintenance of IL-10+TIM4+ dermal macrophages, reducing skin inflammation and promoting tissue regeneration. These results reveal a neuroimmune regulatory pathway driven by the neuropeptide TAFA4 that promotes the anti-inflammatory functions of macrophages and prevents fibrosis after tissue damage, and could lead to new therapeutic perspectives for inflammatory diseases.


Subject(s)
Cytokines/metabolism , Macrophages/metabolism , Regeneration , Sensory Receptor Cells/metabolism , Wound Healing , Animals , Cell Survival , Cytokines/deficiency , Disease Models, Animal , Female , Fibrosis/etiology , Fibrosis/metabolism , Fibrosis/pathology , Fibrosis/prevention & control , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Inflammation/prevention & control , Interleukin-10/biosynthesis , Interleukin-10/metabolism , Macrophages/radiation effects , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Sensory Receptor Cells/radiation effects , Skin/pathology , Skin/radiation effects , Sunburn/complications , Sunburn/etiology , Sunburn/metabolism , Sunburn/pathology , Ultraviolet Rays/adverse effects
8.
Nat Commun ; 12(1): 2936, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34006861

ABSTRACT

Host protection against cutaneous herpes simplex virus 1 (HSV-1) infection relies on the induction of a robust adaptive immune response. Here, we show that Nav1.8+ sensory neurons, which are involved in pain perception, control the magnitude of CD8 T cell priming and expansion in HSV-1-infected mice. The ablation of Nav1.8-expressing sensory neurons is associated with extensive skin lesions characterized by enhanced inflammatory cytokine and chemokine production. Mechanistically, Nav1.8+ sensory neurons are required for the downregulation of neutrophil infiltration in the skin after viral clearance to limit the severity of tissue damage and restore skin homeostasis, as well as for eliciting robust CD8 T cell priming in skin-draining lymph nodes by controlling dendritic cell responses. Collectively, our data reveal an important role for the sensory nervous system in regulating both innate and adaptive immune responses to viral infection, thereby opening up possibilities for new therapeutic strategies.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Herpes Simplex/immunology , Herpesvirus 1, Human/immunology , Nociceptive Pain/immunology , Sensory Receptor Cells/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Cytokines/immunology , Cytokines/metabolism , Female , Herpes Simplex/genetics , Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Humans , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , NAV1.8 Voltage-Gated Sodium Channel/genetics , NAV1.8 Voltage-Gated Sodium Channel/immunology , NAV1.8 Voltage-Gated Sodium Channel/metabolism , Neutrophil Infiltration/immunology , Nociceptive Pain/genetics , Nociceptive Pain/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/virology , Skin/immunology , Skin/metabolism , Skin/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...