Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Cell Endocrinol ; 404: 123-31, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25657048

ABSTRACT

UNLABELLED: Although thyroid gland function is mainly under the control of pituitary TSH, other factors, such as iodine, play a role in this process. The thyroid is capable of producing different iodolipids such as 6-iodo-deltalactone and 2-iodohexadecanal (2-IHDA). It was shown that these iodolipids mimic some of the inhibitory effects of excess iodide on several thyroid parameters. OBJECTIVES: To study the effect of 2-IHDA on cell proliferation and apoptosis in FRTL-5 cells. RESULTS: FRTL-5 cells were grown in the presence of TSH and treated with increasing concentrations of KI and 2-IHDA (0.5, 5, 10 and 33 µM) for 24, 48 and 72 h. Whereas KI inhibited cell proliferation only at 33 µM after 72 h of treatment, 2-IHDA inhibited in a time and concentration dependent manner. Analysis of cell cycle by flow cytometric DNA analysis revealed an accumulation of cells in G1 phase induced by 2-IHDA. The expression of cyclin A, cyclin D1 and cyclin D3 were reduced after treatment with 2-IHDA whereas CDK4 and CDK6 proteins were not modified. 2-IHDA induced a dynamic change in cytoplasmic to nuclear accumulation of p21 and p27 causing these proteins to be accumulated mostly in the nucleus. We also observed evidence of a pro-apoptotic effect of 2-IHDA at highest concentrations. No significant effect of KI was observed. CONCLUSION: These results suggest that the inhibitory effects of 2-IHDA on FRTL-5 thyroid cell proliferation are mediated by cell cycle arrest in G1/S phase and cell death by apoptosis.


Subject(s)
Aldehydes/pharmacology , Cell Cycle Checkpoints/drug effects , Thyroid Gland/cytology , Thyrotropin/pharmacology , Animals , Apoptosis , Cell Line , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Cyclins/metabolism , Cytoplasm/metabolism , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Rats , Thyroid Gland/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL