Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4823, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844436

ABSTRACT

Heat engines are key devices that convert thermal energy into usable energy. Strong thermoelectricity, at the basis of electrical heat engines, is present in superconducting spin tunnel barriers at cryogenic temperatures where conventional semiconducting or metallic technologies cease to work. Here we realize a superconducting spintronic heat engine consisting of a ferromagnetic insulator/superconductor/insulator/ferromagnet tunnel junction (EuS/Al/AlOx/Co). The efficiency of the engine is quantified for bath temperatures ranging from 25 mK up to 800 mK, and at different load resistances. Moreover, we show that the sign of the generated thermoelectric voltage can be inverted according to the parallel or anti-parallel orientation of the two ferromagnetic layers, EuS and Co. This realizes a thermoelectric spin valve controlling the sign and strength of the Seebeck coefficient, thereby implementing a thermoelectric memory cell. We propose a theoretical model that allows describing the experimental data and predicts the engine efficiency for different device parameters.

2.
Adv Mater ; : e2402723, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38665115

ABSTRACT

Magnetism in two dimensions is traditionally considered an exotic phase mediated by spin fluctuations, but far from collinearly ordered in the ground state. Recently, 2D magnetic states have been discovered in layered van der Waals compounds. Their robust and tunable magnetic state by material composition, combined with reduced dimensionality, foresee a strong potential as a key element in magnetic devices. Here, a class of 2D magnets based on metallic chlorides is presented. The magnetic order survives on top of a metallic substrate, even down to the monolayer limit, and can be switched from perpendicular to in-plane by substituting the metal ion from iron to nickel. Using functionalized STM tips as magnetic sensors, local exchange fields are identified, even in the absence of an external magnetic field. Since the compounds are processable by molecular beam epitaxy techniques, they provide a platform with large potential for incorporation into current device technologies.

3.
Nano Lett ; 24(6): 1923-1930, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38315034

ABSTRACT

The bottom-up synthesis of carbon-based nanomaterials directly on semiconductor surfaces allows for the decoupling of their electronic and magnetic properties from the substrates. However, the typically reduced reactivity of such nonmetallic surfaces adversely affects the course of these reactions. Here, we achieve a high polymerization yield of halogenated polyphenyl molecular building blocks on the semiconducting TiO2(110) surface via concomitant surface decoration with cobalt atoms, which catalyze the Ullmann coupling reaction. Specifically, cobalt atoms trigger the debromination of 4,4″-dibromo-p-terphenyl molecules on TiO2(110) and mediate the formation of an intermediate organometallic phase already at room temperature (RT). As the debromination temperature is drastically reduced, homocoupling and polymerization readily proceed, preventing presursor desorption from the substrate and entailing a drastic increase of the poly-para-phenylene polymerization yield. The general efficacy of this mechanism is shown with an iodinated terphenyl derivative, which exhibits similar dehalogenation and reaction yield.

5.
Nat Commun ; 13(1): 4341, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35896541

ABSTRACT

Earth-abundant electrocatalysts for the oxygen evolution reaction (OER) able to work in acidic working conditions are elusive. While many first-row transition metal oxides are competitive in alkaline media, most of them just dissolve or become inactive at high proton concentrations where hydrogen evolution is preferred. Only noble-metal catalysts, such as IrO2, are fast and stable enough in acidic media. Herein, we report the excellent activity and long-term stability of Co3O4-based anodes in 1 M H2SO4 (pH 0.1) when processed in a partially hydrophobic carbon-based protecting matrix. These Co3O4@C composites reliably drive O2 evolution a 10 mA cm-2 current density for >40 h without appearance of performance fatigue, successfully passing benchmarking protocols without incorporating noble metals. Our strategy opens an alternative venue towards fast, energy efficient acid-media water oxidation electrodes.

6.
J Phys Chem Lett ; 13(27): 6276-6282, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35775724

ABSTRACT

We identify and manipulate commonly occurring defects in black phosphorus, combining scanning tunneling microscopy experiments with density functional theory calculations. A ubiquitous defect, imaged at negative bias as a bright dumbbell extending over several nanometers, is shown to arise from a substitutional Sn impurity in the second sublayer. Another frequently observed defect type is identified as arising from an interstitial Sn atom; this defect can be switched to a more stable configuration consisting of a Sn substitutional defect + P adatom, by application of an electrical pulse via the STM tip. DFT calculations show that this pulse-induced structural transition switches the system from a non-magnetic configuration to a magnetic one. We introduce States Projected Onto Individual Layers (SPOIL) quantities which provide information about atom-wise and orbital-wise contributions to bias-dependent features observed in STM images.

7.
Phys Chem Chem Phys ; 24(21): 12719-12744, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35583960

ABSTRACT

In this Perspective we present a comprehensive study of the multiple reaction products of metal-free porphyrins (2H-Ps) in contact with the rutile TiO2(110) surface. In the absence of peripheral functionalization with specific linkers, the porphyrin adsorption is driven by the coordination of the two pyrrolic nitrogen atoms of the macrocycle to two consecutive oxygen atoms of the protruding Obr rows via hydrogen bonding. This chemical interaction favours the iminic nitrogen uptake of hydrogen from near surface layers at room temperature, thus yielding a stable acidic porphyrin (4H-P). In addition, a mild annealing (∼100 °C) triggers the incorporation of a Ti atom in the porphyrin macrocycle (self-metalation). We recently demonstrated that such a low temperature reaction is driven by a Lewis base iminic attack, which lowers the energy barriers for the outdiffusion of Ti interstitial atoms (Tiint) [Kremer et al., Appl. Surf. Sci., 2021, 564, 150403]. In the monolayer (ML) range, the porphyrin adsorption site, corresponding to a TiO-TPP configuration, is extremely stable and tetraphenyl-porphyrins (TPPs) may even undergo conformational distortion (flattening) by partial cyclo-dehydrogenation, while remaining anchored to the O rows up to 450 °C [Lovat et al., Nanoscale, 2017, 9, 11694]. Here we show that, upon self-metalation, isolated molecules at low coverage may jump atop the rows of five-fold coordinated Ti atoms (Ti5f). This configuration is associated with the formation of a new coordination complex, Ti-O-Ti5f, as determined by comparison with the deposition of pristine titanyl-porphyrin (TiO-TPP) molecules. The newly established Ti-O-Ti5f anchoring configuration is found to be stable also beyond the TPP flattening reaction. The anchoring of TiO-TPP to the Ti5f rows is, however, susceptible to the cross-talk between phenyls of adjacent molecules, which ultimately drives the TiO-TPP temperature evolution in the ML range along the same pathway followed by 2H-TPP.

8.
Nat Commun ; 13(1): 2431, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35508475

ABSTRACT

Diodes are key elements for electronics, optics, and detection. Their evolution towards low dissipation electronics has seen the hybridization with superconductors and the realization of supercurrent diodes with zero resistance in only one direction. Here, we present the quasi-particle counterpart, a superconducting tunnel diode with zero conductance in only one direction. The direction-selective propagation of the charge has been obtained through the broken electron-hole symmetry induced by the spin selection of the ferromagnetic tunnel barrier: a EuS thin film separating a superconducting Al and a normal metal Cu layer. The Cu/EuS/Al tunnel junction achieves a large rectification (up to ∼40%) already for a small voltage bias (∼200 µV) thanks to the small energy scale of the system: the Al superconducting gap. With the help of an analytical theoretical model we can link the maximum rectification to the spin polarization (P) of the barrier and describe the quasi-ideal Shockley-diode behavior of the junction. This cryogenic spintronic rectifier is promising for the application in highly-sensitive radiation detection for which two different configurations are evaluated. In addition, the superconducting diode may pave the way for future low-dissipation and fast superconducting electronics.

9.
ACS Nano ; 15(9): 14985-14995, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34491033

ABSTRACT

Metal halides are a class of layered materials with promising electronic and magnetic properties persisting down to the two-dimensional limit. While most recent studies focused on the trihalide components of this family, the rather unexplored metal dihalides are also van der Waals layered systems with distinctive magnetic properties. Here we show that the dihalide NiBr2 grows epitaxially on a Au(111) substrate and exhibits semiconducting and magnetic behavior starting from a single layer. Through a combination of a low-temperature scanning-tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy, and photoemission electron microscopy, we identify two competing layer structures of NiBr2 coexisting at the interface and a stoichiometrically pure layer-by-layer growth beyond. Interestingly, X-ray absorption spectroscopy measurements revealed a magnetically ordered state below 27 K with in-plane magnetic anisotropy and zero-remanence in the single layer of NiBr2/Au(111), which we attribute to a noncollinear magnetic structure. The combination of such two-dimensional magnetic order with the semiconducting behavior down to the 2D limit offers the attractive perspective of using these films as ultrathin crystalline barriers in tunneling junctions and low-dimensional devices.

10.
Nano Lett ; 21(1): 136-143, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33274947

ABSTRACT

Two-dimensional transition metal dichalcogenides (TMDs) represent an ideal testbench for the search of materials by design, because their optoelectronic properties can be manipulated through surface engineering and molecular functionalization. However, the impact of molecules on intrinsic physical properties of TMDs, such as superconductivity, remains largely unexplored. In this work, the critical temperature (TC) of large-area NbSe2 monolayers is manipulated, employing ultrathin molecular adlayers. Spectroscopic evidence indicates that aligned molecular dipoles within the self-assembled layers act as a fixed gate terminal, collectively generating a macroscopic electrostatic field on NbSe2. This results in an ∼55% increase and a 70% decrease in TC depending on the electric field polarity, which is controlled via molecular selection. The reported functionalization, which improves the air stability of NbSe2, is efficient, practical, up-scalable, and suited to functionalize large-area TMDs. Our results indicate the potential of hybrid 2D materials as a novel platform for tunable superconductivity.

11.
Nano Lett ; 20(9): 6815-6823, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32786952

ABSTRACT

Spin-dependent transport at heavy metal/magnetic insulator interfaces is at the origin of many phenomena at the forefront of spintronics research. A proper quantification of the different interfacial spin conductances is crucial for many applications. Here, we report the first measurement of the spin Hall magnetoresistance (SMR) of Pt on a purely ferromagnetic insulator (EuS). We perform SMR measurements in a wide range of temperatures and fit the results by using a microscopic model. From this fitting procedure, we obtain the temperature dependence of the spin conductances (Gs, Gr, and Gi), disentangling the contribution of field-like torque (Gi), damping-like torque (Gr), and spin-flip scattering (Gs). An interfacial exchange field of the order of 1 meV acting upon the conduction electrons of Pt can be estimated from Gi, which is at least three times larger than Gr below the Curie temperature. Our work provides an easy method to quantify this interfacial spin-splitting field, which plays a key role in emerging fields such as superconducting spintronics and caloritronics as well as topological quantum computation.

12.
Nature ; 583(7814): 48-54, 2020 07.
Article in English | MEDLINE | ID: mdl-32572207

ABSTRACT

Observation of the neutrinoless double ß decay is the only practical way to establish that neutrinos are their own antiparticles1. Because of the small masses of neutrinos, the lifetime of neutrinoless double ß decay is expected to be at least ten orders of magnitude greater than the typical lifetimes of natural radioactive chains, which can mimic the experimental signature of neutrinoless double ß decay2. The most robust identification of neutrinoless double ß decay requires the definition of a signature signal-such as the observation of the daughter atom in the decay-that cannot be generated by radioactive backgrounds, as well as excellent energy resolution. In particular, the neutrinoless double ß decay of 136Xe could be established by detecting the daughter atom, 136Ba2+, in its doubly ionized state3-8. Here we demonstrate an important step towards a 'barium-tagging' experiment, which identifies double ß decay through the detection of a single Ba2+ ion. We propose a fluorescent bicolour indicator as the core of a sensor that can detect single Ba2+ ions in a high-pressure xenon gas detector. In a sensor made of a monolayer of such indicators, the Ba2+ dication would be captured by one of the molecules and generate a Ba2+-coordinated species with distinct photophysical properties. The presence of such a single Ba2+-coordinated indicator would be revealed by its response to repeated interrogation with a laser system, enabling the development of a sensor able to detect single Ba2+ ions in high-pressure xenon gas detectors for barium-tagging experiments.

13.
Chem Commun (Camb) ; 55(21): 3109-3112, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30789176

ABSTRACT

We report for the first time on a pulsed vapor phase copper-free azide-alkyne click reaction on ZnO by using the atomic layer deposition (ALD) process technology. This reproducible and fast method is based on an in situ two-step reaction consisting of sequential exposures of ZnO to propiolic acid and benzyl azide.

14.
ACS Nano ; 11(12): 12392-12401, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29161499

ABSTRACT

The high reactivity of magnetic substrates toward molecular overlayers has so far inhibited the realization of more sophisticated on-surface reactions, thereby depriving these interfaces of a significant class of chemically tailored organics such as graphene nanoribbons, oligonuclear spin-chains, and metal-organic networks. Here, we present a multitechnique characterization of the polymerization of 4,4″-dibromo-p-terphenyl precursors into ordered poly(p-phenylene) arrays on top of the bimetallic GdAu2 surface alloy. The activation temperatures for bromine scission and subsequent homocoupling of molecular precursors were followed by temperature-dependent X-ray photoelectron spectroscopy. The structural characterizations of supramolecular and polymeric phases, performed by low-energy electron diffraction and scanning tunneling microscopy, establish an extraordinary degree of order extending into the mesoscale. Taking advantage of the high homogeneity, the electronic structure of the valence band was determined with angle-resolved photoemission spectroscopy. Importantly, the transition of localized molecular orbitals into a highly dispersive π-band, the fingerprint of successful polymerization, was observed while leaving all surface-related bands intact. Moreover, ferromagnetic ordering in the GdAu2 alloy was demonstrated for all phases by X-ray absorption spectroscopy. The transfer of well-established in situ methods for growing covalently bonded macromolecules with atomic precision onto magnetic rare-earth alloys is an important step toward toward studying and controlling intrinsic carbon- and rare-earth-based magnetism.

15.
Nanoscale ; 9(32): 11694-11704, 2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28776050

ABSTRACT

We demonstrate the thermal stability up to 450 °C of a titanium(iv)-porphyrin monolayer grown on the rutile TiO2(110) surface. Starting from a film of metal-free tetra-phenyl-porphyrin, 2HTPP, deposited at room temperature, we show that, beyond the self-metalation reaction at 150°-200 °C, a second phase transition takes place at ∼350 °C. Using surface diffraction and microscopy, we observe a change of the phase symmetry from (2 × 4)-obliq to (2 × 6)-rect. Core level photoemission indicates that the chemical states of both the molecular tetrapyrrolic macrocycle and the substrate are unchanged. X-ray absorption spectroscopy reveals that the driving mechanism is a rotation of the phenyl terminations towards the substrate (flattening) that triggers a conformational change of the molecule through partial cyclo-dehydrogenation. From comparison with first principles calculations, we show that the common feature of these multiple phase transitions is the chemical nature of the porphyrin bonding atop the substrate oxygen rows: the coordination of the macrocycle central pocket to the oxygen atoms beneath is preserved throughout both the self-metalation and flattening reactions. The molecular orientation and arrangement are determined by steric constraints and intermolecular interactions, whereas the specific adsorption site is further stabilized by the interaction of the peripheral C-H network with the adjacent oxygen rows. Porphyrins are thus trapped at the TiO2(110) surface, where they demonstrate an exceptionally high thermal stability (up to ∼450 °C), which makes this interface potentially useful for sensors and photocatalysis applications in harsh environments.

16.
ACS Nano ; 10(9): 9000-8, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27548516

ABSTRACT

Contributing to the need for new graphene nanoribbon (GNR) structures that can be synthesized with atomic precision, we have designed a reactant that renders chiral (3,1)-GNRs after a multistep reaction including Ullmann coupling and cyclodehydrogenation. The nanoribbon synthesis has been successfully proven on different coinage metals, and the formation process, together with the fingerprints associated with each reaction step, has been studied by combining scanning tunneling microscopy, core-level spectroscopy, and density functional calculations. In addition to the GNR's chiral edge structure, the substantial GNR lengths achieved and the low processing temperature required to complete the reaction grant this reactant extremely interesting properties for potential applications.

17.
ACS Appl Mater Interfaces ; 8(26): 16783-90, 2016 Jul 06.
Article in English | MEDLINE | ID: mdl-27303943

ABSTRACT

Kelvin probe force microscopy in darkness and under illumination is reported to provide nanoscale-resolved surface photovoltage maps of hybrid materials. In particular, nanoscale charge injection and charge recombination mechanisms occurring in ZnO polycrystalline surfaces functionalized with Protoporphyrin IX (H2PPIX) are analyzed. Local surface potential and surface photovoltage maps not only reveal that upon molecular adsorption the bare ZnO work function increases, but also they allow study of its local dependence. Nanometer-sized regions not correlated with apparent topographic features were identified, presenting values significantly different from the average work function. Depending on the region, the response to the light excitation is different, distinguishing two relaxation processes, one faster than the other. This behavior can be explained in terms of electrons trapped closed to the molecule-semiconductor interface or electrons pushed into the ZnO bulk, respectively. Moreover, the origin of these differences is correlated with the H2PPIX-ZnO bonding and molecules configuration and aggregation. The chenodeoxycholic acid (CDCA) coadsorption leads to a more homogeneous surface potential distribution, confirming the antiaggregate effect of this additive, while the surface photovoltage is mostly dominated by the slow relaxation component. This work reveals the complexity of real device architectures with ill-defined surfaces even in a relatively simple system with only one type of dye molecule and hightlights the importance of nanoscale characterization with appropriate tools.

18.
J Am Chem Soc ; 138(17): 5685-92, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27115554

ABSTRACT

Surface-confined dehalogenation reactions are versatile bottom-up approaches for the synthesis of carbon-based nanostructures with predefined chemical properties. However, for devices generally requiring low-conductivity substrates, potential applications are so far severely hampered by the necessity of a metallic surface to catalyze the reactions. In this work we report the synthesis of ordered arrays of poly(p-phenylene) chains on the surface of semiconducting TiO2(110) via a dehalogenative homocoupling of 4,4″-dibromoterphenyl precursors. The supramolecular phase is clearly distinguished from the polymeric one using low-energy electron diffraction and scanning tunneling microscopy as the substrate temperature used for deposition is varied. X-ray photoelectron spectroscopy of C 1s and Br 3d core levels traces the temperature of the onset of dehalogenation to around 475 K. Moreover, angle-resolved photoemission spectroscopy and tight-binding calculations identify a highly dispersive band characteristic of a substantial overlap between the precursor's π states along the polymer, considered as the fingerprint of a successful polymerization. Thus, these results establish the first spectroscopic evidence that atomically precise carbon-based nanostructures can readily be synthesized on top of a transition-metal oxide surface, opening the prospect for the bottom-up production of novel molecule-semiconductor devices.

19.
Nano Lett ; 16(3): 2017-22, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26752001

ABSTRACT

A vicinal rutile TiO2(110) crystal with a smooth variation of atomic steps parallel to the [1-10] direction was analyzed locally with STM and ARPES. The step edge morphology changes across the samples, from [1-11] zigzag faceting to straight [1-10] steps. A step-bunching phase is attributed to an optimal (110) terrace width, where all bridge-bonded O atom vacancies (Obr vacs) vanish. The [1-10] steps terminate with a pair of 2-fold coordinated O atoms, which give rise to bright, triangular protrusions (St) in STM. The intensity of the Ti 3d-derived gap state correlates with the sum of Obr vacs plus St protrusions at steps, suggesting that both Obr vacs and steps contribute a similar effective charge to sample doping. The binding energy of the gap state shifts when going from the flat (110) surface toward densely stepped planes, pointing to differences in the Ti(3+) polaron near steps and at terraces.

20.
Phys Rev Lett ; 116(1): 016603, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26799036

ABSTRACT

We report measurements of a new type of magnetoresistance in Pt and Ta thin films. The spin accumulation created at the surfaces of the film by the spin Hall effect decreases in a magnetic field because of the Hanle effect, resulting in an increase of the electrical resistance as predicted by Dyakonov [Phys. Rev. Lett. 99, 126601 (2007)]. The angular dependence of this magnetoresistance resembles the recently discovered spin Hall magnetoresistance in Pt/Y(3)Fe(5)O(12) bilayers, although the presence of a ferromagnetic insulator is not required. We show that this Hanle magnetoresistance is an alternative simple way to quantitatively study the coupling between charge and spin currents in metals with strong spin-orbit coupling.

SELECTION OF CITATIONS
SEARCH DETAIL
...