Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38979239

ABSTRACT

Developing vaccines that promote CD8 + T cell memory is a challenge for infectious disease and cancer immunotherapy. TCF-1 + stem cell-like memory T (T SCM ) cells are important determinants of long-lived memory. Yet, the developmental requirements for T SCM formation are unclear. Here, we identify the temporal window for type I interferon (IFN-I) receptor (IFNAR) blockade to drive T SCM cell generation. T SCM cells were transcriptionally distinct and emerged from a transitional precursor of exhausted (T PEX ) cellular state concomitant with viral clearance. T SCM differentiation correlated with T cell retention within the lymph node paracortex, due to increased CXCR3 chemokine abundance which disrupted gradient formation. These affects were due a counterintuitive increase in IFNψ, which controlled cell location. Combining IFNAR inhibition with mRNA-LNP vaccination promoted specific T SCM differentiation and enhanced protection against chronic infection. These finding propose a new approach to vaccine design whereby modulation of inflammation promotes memory formation and function. HIGHLIGHTS: Early, transient inhibition of the type I interferon (IFN) receptor (IFNAR) during acute viral infection promotes stem cell-like memory T (T SCM ) cell differentiation without establishing chronic infection. T SCM and precursor of exhausted (T PEX ) cellular states are distinguished transcriptionally and by cell surface markers. Developmentally, T SCM cell differentiation occurs via a transition from a T PEX state coinciding with viral clearance. Transient IFNAR blockade increases IFNψ production to modulate the ligands of CXCR3 and couple T SCM differentiation to cell retention within the T cell paracortex of the lymph node. Specific promotion of T SCM cell differentiation with nucleoside-modified mRNA-LNP vaccination elicits enhanced protection against chronic viral challenge.

2.
Nat Commun ; 15(1): 5219, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890312

ABSTRACT

With resistance to most antimalarials increasing, it is imperative that new drugs are developed. We previously identified an aryl acetamide compound, MMV006833 (M-833), that inhibited the ring-stage development of newly invaded merozoites. Here, we select parasites resistant to M-833 and identify mutations in the START lipid transfer protein (PF3D7_0104200, PfSTART1). Introducing PfSTART1 mutations into wildtype parasites reproduces resistance to M-833 as well as to more potent analogues. PfSTART1 binding to the analogues is validated using organic solvent-based Proteome Integral Solubility Alteration (Solvent PISA) assays. Imaging of invading merozoites shows the inhibitors prevent the development of ring-stage parasites potentially by inhibiting the expansion of the encasing parasitophorous vacuole membrane. The PfSTART1-targeting compounds also block transmission to mosquitoes and with multiple stages of the parasite's lifecycle being affected, PfSTART1 represents a drug target with a new mechanism of action.


Subject(s)
Acetamides , Antimalarials , Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Plasmodium falciparum/growth & development , Acetamides/pharmacology , Acetamides/chemistry , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Antimalarials/pharmacology , Antimalarials/chemistry , Animals , Carrier Proteins/metabolism , Carrier Proteins/genetics , Mutation , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/drug therapy , Humans , Drug Resistance/genetics , Drug Resistance/drug effects , Life Cycle Stages/drug effects
3.
EMBO Mol Med ; 16(7): 1717-1749, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750308

ABSTRACT

Necroptosis is a lytic form of regulated cell death reported to contribute to inflammatory diseases of the gut, skin and lung, as well as ischemic-reperfusion injuries of the kidney, heart and brain. However, precise identification of the cells and tissues that undergo necroptotic cell death in vivo has proven challenging in the absence of robust protocols for immunohistochemical detection. Here, we provide automated immunohistochemistry protocols to detect core necroptosis regulators - Caspase-8, RIPK1, RIPK3 and MLKL - in formalin-fixed mouse and human tissues. We observed surprising heterogeneity in protein expression within tissues, whereby short-lived immune barrier cells were replete with necroptotic effectors, whereas long-lived cells lacked RIPK3 or MLKL expression. Local changes in the expression of necroptotic effectors occurred in response to insults such as inflammation, dysbiosis or immune challenge, consistent with necroptosis being dysregulated in disease contexts. These methods will facilitate the precise localisation and evaluation of necroptotic signaling in vivo.


Subject(s)
Immunohistochemistry , Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases , Animals , Humans , Mice , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Immunohistochemistry/methods , Protein Kinases/metabolism , Protein Kinases/genetics , Caspase 8/metabolism , Signal Transduction , Mice, Inbred C57BL
4.
J Clin Invest ; 134(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557491

ABSTRACT

Mutations in genes encoding chromatin modifiers are enriched among mutations causing intellectual disability. The continuing development of the brain postnatally, coupled with the inherent reversibility of chromatin modifications, may afford an opportunity for therapeutic intervention following a genetic diagnosis. Development of treatments requires an understanding of protein function and models of the disease. Here, we provide a mouse model of Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS) (OMIM 603736) and demonstrate proof-of-principle efficacy of postnatal treatment. SBBYSS results from heterozygous mutations in the KAT6B (MYST4/MORF/QFK) gene and is characterized by intellectual disability and autism-like behaviors. Using human cells carrying SBBYSS-specific KAT6B mutations and Kat6b heterozygous mice (Kat6b+/-), we showed that KAT6B deficiency caused a reduction in histone H3 lysine 9 acetylation. Kat6b+/- mice displayed learning, memory, and social deficits, mirroring SBBYSS individuals. Treatment with a histone deacetylase inhibitor, valproic acid, or an acetyl donor, acetyl-carnitine (ALCAR), elevated histone acetylation levels in the human cells with SBBYSS mutations and in brain and blood cells of Kat6b+/- mice and partially reversed gene expression changes in Kat6b+/- cortical neurons. Both compounds improved sociability in Kat6b+/- mice, and ALCAR treatment restored learning and memory. These data suggest that a subset of SBBYSS individuals may benefit from postnatal therapeutic interventions.


Subject(s)
Abnormalities, Multiple , Acetylcarnitine , Congenital Hypothyroidism , Craniofacial Abnormalities , Histone Acetyltransferases , Intellectual Disability , Joint Instability , Animals , Humans , Mice , Abnormalities, Multiple/drug therapy , Abnormalities, Multiple/genetics , Acetylation , Acetylcarnitine/pharmacology , Acetylcarnitine/therapeutic use , Blepharophimosis , Chromatin , Craniofacial Abnormalities/drug therapy , Craniofacial Abnormalities/genetics , Exons , Facies , Heart Defects, Congenital , Histone Acetyltransferases/antagonists & inhibitors , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Histones/genetics , Intellectual Disability/drug therapy , Intellectual Disability/genetics
5.
Commun Biol ; 7(1): 461, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627519

ABSTRACT

EphB6 is an understudied ephrin receptor tyrosine pseudokinase that is downregulated in multiple types of metastatic cancers. Unlike its kinase-active counterparts which autophosphorylate and transmit signals upon intercellular interaction, little is known about how EphB6 functions in the absence of intrinsic kinase activity. Here, we unveil a molecular mechanism of cell-cell interaction driven by EphB6. We identify ephrinB1 as a cognate ligand of EphB6 and show that in trans interaction of EphB6 with ephrinB1 on neighboring cells leads to the formation of large co-clusters at the plasma membrane. These co-clusters exhibit a decreased propensity towards endocytosis, suggesting a unique characteristic for this type of cell-cell interaction. Using lattice light-sheet microscopy, 3D structured illumination microscopy and cryo-electron tomography techniques, we show that co-clustering of EphB6 and ephrinB1 promotes the formation of double-membrane tubular structures between cells. Importantly, we also demonstrate that these intercellular structures stabilize cell-cell adhesion, leading to a reduction in the invasive behavior of cancer cells. Our findings rationalize a role for EphB6 pseudokinase as a tumor suppressor when interacting with its ligands in trans.


Subject(s)
Phosphorylation , Neoplasm Invasiveness
6.
Elife ; 122023 Dec 15.
Article in English | MEDLINE | ID: mdl-38099646

ABSTRACT

ZRANB1 (human Trabid) missense mutations have been identified in children diagnosed with a range of congenital disorders including reduced brain size, but how Trabid regulates neurodevelopment is not understood. We have characterized these patient mutations in cells and mice to identify a key role for Trabid in the regulation of neurite growth. One of the patient mutations flanked the catalytic cysteine of Trabid and its deubiquitylating (DUB) activity was abrogated. The second variant retained DUB activity, but failed to bind STRIPAK, a large multiprotein assembly implicated in cytoskeleton organization and neural development. Zranb1 knock-in mice harboring either of these patient mutations exhibited reduced neuronal and glial cell densities in the brain and a motor deficit consistent with fewer dopaminergic neurons and projections. Mechanistically, both DUB-impaired and STRIPAK-binding-deficient Trabid variants impeded the trafficking of adenomatous polyposis coli (APC) to microtubule plus-ends. Consequently, the formation of neuronal growth cones and the trajectory of neurite outgrowth from mutant midbrain progenitors were severely compromised. We propose that STRIPAK recruits Trabid to deubiquitylate APC, and that in cells with mutant Trabid, APC becomes hyperubiquitylated and mislocalized causing impaired organization of the cytoskeleton that underlie the neuronal and developmental phenotypes.


Subject(s)
Adenomatous Polyposis Coli , Neurites , Animals , Child , Humans , Mice , Adenomatous Polyposis Coli/metabolism , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism , Axons/metabolism , Mutation , Neurites/metabolism
7.
Proc Natl Acad Sci U S A ; 120(32): e2301689120, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37523564

ABSTRACT

The diversity of COVID-19 disease in otherwise healthy people, from seemingly asymptomatic infection to severe life-threatening disease, is not clearly understood. We passaged a naturally occurring near-ancestral SARS-CoV-2 variant, capable of infecting wild-type mice, and identified viral genomic mutations coinciding with the acquisition of severe disease in young adult mice and lethality in aged animals. Transcriptomic analysis of lung tissues from mice with severe disease elucidated a host antiviral response dominated mainly by interferon and IL-6 pathway activation in young mice, while in aged animals, a fatal outcome was dominated by TNF and TGF-ß signaling. Congruent with our pathway analysis, we showed that young TNF-deficient mice had mild disease compared to controls and aged TNF-deficient animals were more likely to survive infection. Emerging clinical correlates of disease are consistent with our preclinical studies, and our model may provide value in defining aberrant host responses that are causative of severe COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Young Adult , Humans , Mice , Animals , Aged , SARS-CoV-2/genetics , COVID-19/genetics , Virulence/genetics , Mutation , Disease Models, Animal
8.
PLoS Biol ; 21(4): e3002066, 2023 04.
Article in English | MEDLINE | ID: mdl-37053271

ABSTRACT

With emerging resistance to frontline treatments, it is vital that new antimalarial drugs are identified to target Plasmodium falciparum. We have recently described a compound, MMV020291, as a specific inhibitor of red blood cell (RBC) invasion, and have generated analogues with improved potency. Here, we generated resistance to MMV020291 and performed whole genome sequencing of 3 MMV020291-resistant populations. This revealed 3 nonsynonymous single nucleotide polymorphisms in 2 genes; 2 in profilin (N154Y, K124N) and a third one in actin-1 (M356L). Using CRISPR-Cas9, we engineered these mutations into wild-type parasites, which rendered them resistant to MMV020291. We demonstrate that MMV020291 reduces actin polymerisation that is required by the merozoite stage parasites to invade RBCs. Additionally, the series inhibits the actin-1-dependent process of apicoplast segregation, leading to a delayed death phenotype. In vitro cosedimentation experiments using recombinant P. falciparum proteins indicate that potent MMV020291 analogues disrupt the formation of filamentous actin in the presence of profilin. Altogether, this study identifies the first compound series interfering with the actin-1/profilin interaction in P. falciparum and paves the way for future antimalarial development against the highly dynamic process of actin polymerisation.


Subject(s)
Antimalarials , Malaria, Falciparum , Humans , Plasmodium falciparum/metabolism , Actins/genetics , Actins/metabolism , Profilins/genetics , Profilins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Malaria, Falciparum/genetics , Erythrocytes/parasitology , Antimalarials/pharmacology
9.
Nat Microbiol ; 7(12): 2039-2053, 2022 12.
Article in English | MEDLINE | ID: mdl-36396942

ABSTRACT

The most severe form of malaria is caused by Plasmodium falciparum. These parasites invade human erythrocytes, and an essential step in this process involves the ligand PfRh5, which forms a complex with cysteine-rich protective antigen (CyRPA) and PfRh5-interacting protein (PfRipr) (RCR complex) and binds basigin on the host cell. We identified a heteromeric disulfide-linked complex consisting of P. falciparum Plasmodium thrombospondin-related apical merozoite protein (PfPTRAMP) and P. falciparum cysteine-rich small secreted protein (PfCSS) and have shown that it binds RCR to form a pentameric complex, PCRCR. Using P. falciparum lines with conditional knockouts, invasion inhibitory nanobodies to both PfPTRAMP and PfCSS, and lattice light-sheet microscopy, we show that they are essential for merozoite invasion. The PCRCR complex functions to anchor the contact between merozoite and erythrocyte membranes brought together by strong parasite deformations. We solved the structure of nanobody-PfCSS complexes to identify an inhibitory epitope. Our results define the function of the PCRCR complex and identify invasion neutralizing epitopes providing a roadmap for structure-guided development of these proteins for a blood stage malaria vaccine.


Subject(s)
Blood Group Antigens , Malaria Vaccines , Malaria, Falciparum , Humans , Plasmodium falciparum/genetics , Cysteine , Erythrocytes , Epitopes
11.
Nat Commun ; 13(1): 4400, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35906227

ABSTRACT

Tryptophan C-mannosylation stabilizes proteins bearing a thrombospondin repeat (TSR) domain in metazoans. Here we show that Plasmodium falciparum expresses a DPY19 tryptophan C-mannosyltransferase in the endoplasmic reticulum and that DPY19-deficiency abolishes C-glycosylation, destabilizes members of the TRAP adhesin family and inhibits transmission to mosquitoes. Imaging P. falciparum gametogenesis in its entirety in four dimensions using lattice light-sheet microscopy reveals defects in ΔDPY19 gametocyte egress and exflagellation. While egress is diminished, ΔDPY19 microgametes still fertilize macrogametes, forming ookinetes, but these are abrogated for mosquito infection. The gametogenesis defects correspond with destabilization of MTRAP, which we show is C-mannosylated in P. falciparum, and the ookinete defect is concordant with defective CTRP secretion on the ΔDPY19 background. Genetic complementation of DPY19 restores ookinete infectivity, sporozoite production and C-mannosylation activity. Therefore, tryptophan C-mannosylation by DPY19 ensures TSR protein quality control at two lifecycle stages for successful transmission of the human malaria parasite.


Subject(s)
Culicidae , Malaria, Falciparum , Animals , Culicidae/metabolism , Glycosylation , Humans , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Thrombospondins/metabolism , Tryptophan/metabolism
12.
Cell Death Differ ; 29(12): 2519-2530, 2022 12.
Article in English | MEDLINE | ID: mdl-35831623

ABSTRACT

High-throughput methodologies are the cornerstone of screening approaches to identify novel compounds that regulate immune cell function. To identify novel targeted therapeutics to treat immune disorders and haematological malignancies, there is a need to integrate functional cellular information with the molecular mechanisms that regulate changes in immune cell phenotype. We facilitate this goal by combining quantitative methods for dissecting complex simultaneous cell phenotypic effects with genomic analysis. This combination strategy we term Multiplexed Analysis of Cells sequencing (MAC-seq), a modified version of Digital RNA with perturbation of Genes (DRUGseq). We applied MAC-seq to screen compounds that target the epigenetic machinery of B cells and assess altered humoral immunity by measuring changes in proliferation, survival, differentiation and transcription. This approach revealed that polycomb repressive complex 2 (PRC2) inhibitors promote antibody secreting cell (ASC) differentiation in both murine and human B cells in vitro. This is further validated using T cell-dependent immunization in mice. Functional dissection of downstream effectors of PRC2 using arrayed CRISPR screening uncovered novel regulators of B cell differentiation, including Mybl1, Myof, Gas7 and Atoh8. Together, our findings demonstrate that integrated phenotype-transcriptome analyses can be effectively combined with drug screening approaches to uncover the molecular circuitry that drives lymphocyte fate decisions.


Subject(s)
B-Lymphocytes , Epigenesis, Genetic , Animals , Humans , Mice , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/genetics , Gene Expression Profiling , Phenotype , Polycomb Repressive Complex 2/metabolism
13.
Nat Commun ; 13(1): 2321, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484149

ABSTRACT

Coatomer complex I (COPI) mediates retrograde vesicular trafficking from Golgi to the endoplasmic reticulum (ER) and within Golgi compartments. Deficiency in subunit alpha causes COPA syndrome and is associated with type I IFN signalling, although the upstream innate immune sensor involved was unknown. Using in vitro models we find aberrant activation of the STING pathway due to deficient retrograde but probably not intra-Golgi transport. Further we find the upstream cytosolic DNA sensor cGAS as essentially required to drive type I IFN signalling. Genetic deletion of COPI subunits COPG1 or COPD similarly induces type I IFN activation in vitro, which suggests that inflammatory diseases associated with mutations in other COPI subunit genes may exist. Finally, we demonstrate that inflammation in COPA syndrome patient peripheral blood mononuclear cells and COPI-deficient cell lines is ameliorated by treatment with the small molecule STING inhibitor H-151, suggesting targeted inhibition of the cGAS/STING pathway as a promising therapeutic approach.


Subject(s)
Leukocytes, Mononuclear , Nucleotidyltransferases , COP-Coated Vesicles/metabolism , Coat Protein Complex I/metabolism , Electron Transport Complex I/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Signal Transduction
15.
Sci Immunol ; 7(68): eabi6763, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35148201

ABSTRACT

Proteasome dysfunction can lead to autoinflammatory disease associated with elevated type I interferon (IFN-αß) and NF-κB signaling; however, the innate immune pathway driving this is currently unknown. Here, we identified protein kinase R (PKR) as an innate immune sensor for proteotoxic stress. PKR activation was observed in cellular models of decreased proteasome function and in multiple cell types from patients with proteasome-associated autoinflammatory disease (PRAAS). Furthermore, genetic deletion or small-molecule inhibition of PKR in vitro ameliorated inflammation driven by proteasome deficiency. In vivo, proteasome inhibitor-induced inflammatory gene transcription was blunted in PKR-deficient mice compared with littermate controls. PKR also acted as a rheostat for proteotoxic stress by triggering phosphorylation of eIF2α, which can prevent the translation of new proteins to restore homeostasis. Although traditionally known as a sensor of RNA, under conditions of proteasome dysfunction, PKR sensed the cytoplasmic accumulation of a known interactor, interleukin-24 (IL-24). When misfolded IL-24 egress into the cytosol was blocked by inhibition of the endoplasmic reticulum-associated degradation pathway, PKR activation and subsequent inflammatory signaling were blunted. Cytokines such as IL-24 are normally secreted from cells; therefore, cytoplasmic accumulation of IL-24 represents an internal danger-associated molecular pattern. Thus, we have identified a mechanism by which proteotoxic stress is detected, causing inflammation observed in the disease PRAAS.


Subject(s)
Immunity, Innate/immunology , Interleukins/immunology , eIF-2 Kinase/immunology , Animals , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , eIF-2 Kinase/deficiency
16.
Cell Host Microbe ; 30(2): 232-247.e6, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34921775

ABSTRACT

Toxoplasma gondii develops a latent infection in the muscle and central nervous system that acts as a reservoir for acute-stage reactivation in vulnerable patients. Little is understood about how parasites manipulate host cells during latent infection and the impact this has on survival. We show that bradyzoites impart a unique transcriptional signature on infected host cells. Many of these transcriptional changes rely on protein export and result in the suppression of type I interferon (IFN) and IFNγ signaling more so than in acute stages. Loss of the protein export component, MYR1, abrogates transcriptional remodeling and prevents suppression of IFN signaling. Among the exported proteins, the inhibitor of STAT1 transcription (IST) plays a key role in limiting IFNγ signaling in bradyzoites. Furthermore, bradyzoite protein export protects host cells from IFNγ-mediated cell death, even when export is restricted to latent stages. These findings highlight the functional importance of host manipulation in Toxoplasma's bradyzoite stages.


Subject(s)
Toxoplasma , Cell Death , Humans , Interferon-gamma/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Toxoplasma/metabolism
17.
Nature ; 602(7896): 328-335, 2022 02.
Article in English | MEDLINE | ID: mdl-34933320

ABSTRACT

Mutations in the protein kinase PINK1 lead to defects in mitophagy and cause autosomal recessive early onset Parkinson's disease1,2. PINK1 has many unique features that enable it to phosphorylate ubiquitin and the ubiquitin-like domain of Parkin3-9. Structural analysis of PINK1 from diverse insect species10-12 with and without ubiquitin provided snapshots of distinct structural states yet did not explain how PINK1 is activated. Here we elucidate the activation mechanism of PINK1 using crystallography and cryo-electron microscopy (cryo-EM). A crystal structure of unphosphorylated Pediculus humanus corporis (Ph; human body louse) PINK1 resolves an N-terminal helix, revealing the orientation of unphosphorylated yet active PINK1 on the mitochondria. We further provide a cryo-EM structure of a symmetric PhPINK1 dimer trapped during the process of trans-autophosphorylation, as well as a cryo-EM structure of phosphorylated PhPINK1 undergoing a conformational change to an active ubiquitin kinase state. Structures and phosphorylation studies further identify a role for regulatory PINK1 oxidation. Together, our research delineates the complete activation mechanism of PINK1, illuminates how PINK1 interacts with the mitochondrial outer membrane and reveals how PINK1 activity may be modulated by mitochondrial reactive oxygen species.


Subject(s)
Insect Proteins , Pediculus , Protein Kinases , Animals , Cryoelectron Microscopy , Insect Proteins/metabolism , Mitochondria , Mitophagy , Phosphorylation , Protein Conformation , Protein Kinases/metabolism , Ubiquitin/metabolism
19.
Nat Methods ; 18(9): 997-1012, 2021 09.
Article in English | MEDLINE | ID: mdl-34341583

ABSTRACT

Understanding intratumoral heterogeneity-the molecular variation among cells within a tumor-promises to address outstanding questions in cancer biology and improve the diagnosis and treatment of specific cancer subtypes. Single-cell analyses, especially RNA sequencing and other genomics modalities, have been transformative in revealing novel biomarkers and molecular regulators associated with tumor growth, metastasis and drug resistance. However, these approaches fail to provide a complete picture of tumor biology, as information on cellular location within the tumor microenvironment is lost. New technologies leveraging multiplexed fluorescence, DNA, RNA and isotope labeling enable the detection of tens to thousands of cancer subclones or molecular biomarkers within their native spatial context. The expeditious growth in these techniques, along with methods for multiomics data integration, promises to yield a more comprehensive understanding of cell-to-cell variation within and between individual tumors. Here we provide the current state and future perspectives on the spatial technologies expected to drive the next generation of research and diagnostic and therapeutic strategies for cancer.


Subject(s)
Gene Expression Profiling/methods , Mass Spectrometry/methods , Neoplasms/diagnostic imaging , Proteins/analysis , Animals , Humans , Mice, Transgenic , Multimodal Imaging , Neoplasms/genetics , Neoplasms/pathology , Single-Cell Analysis/methods , Tumor Microenvironment
20.
Sci Adv ; 7(28)2021 07.
Article in English | MEDLINE | ID: mdl-34233875

ABSTRACT

Intratumoral heterogeneity is a driver of breast cancer progression, but the nature of the clonal interactive network involved in this process remains unclear. Here, we optimized the use of optical barcoding to visualize and characterize 31 cancer subclones in vivo. By mapping the clonal composition of thousands of metastases in two clinically relevant sites, the lungs and liver, we found that metastases were highly polyclonal in lungs but not in the liver. Furthermore, the transcriptome of the subclones varied according to their metastatic niche. We also identified a reversible niche-driven signature that was conserved in lung and liver metastases collected during patient autopsies. Among this signature, we found that the tumor necrosis factor-α pathway was up-regulated in lung compared to liver metastases, and inhibition of this pathway affected metastasis diversity. These results highlight that the cellular and molecular heterogeneity observed in metastases is largely dictated by the tumor microenvironment.


Subject(s)
Breast Neoplasms , Liver Neoplasms , Lung Neoplasms , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Lung Neoplasms/pathology , Neoplasm Metastasis , Transcriptome , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL