Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Cell ; 23(3): e14061, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38105557

ABSTRACT

Once tooth development is complete, odontoblasts and their progenitor cells in the dental pulp play a major role in protecting tooth vitality from external stresses. Hence, understanding the homeostasis of the mature pulp populations is just as crucial as understanding that of the young, developing ones for managing age-related dentinal damage. Here, it is shown that loss of Cpne7 accelerates cellular senescence in odontoblasts due to oxidative stress and DNA damage accumulation. Thus, in Cpne7-null dental pulp, odontoblast survival is impaired, and aberrant dentin is extensively formed. Intraperitoneal or topical application of CPNE7-derived functional peptide, however, alleviates the DNA damage accumulation and rescues the pathologic dentin phenotype. Notably, a healthy dentin-pulp complex lined with metabolically active odontoblasts is observed in 23-month-old Cpne7-overexpressing transgenic mice. Furthermore, physiologic dentin was regenerated in artificial dentinal defects of Cpne7-overexpressing transgenic mice. Taken together, Cpne7 is indispensable for the maintenance and homeostasis of odontoblasts, while promoting odontoblastic differentiation of the progenitor cells. This research thereby introduces its potential in oral disease-targeted applications, especially age-related dental diseases involving dentinal loss.


Subject(s)
Aging, Premature , Mice , Animals , Dental Pulp , Cellular Senescence/genetics , Odontoblasts , Cell Differentiation/genetics , Mice, Transgenic
2.
Sensors (Basel) ; 20(11)2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32517305

ABSTRACT

Since separation of target biomolecules is a crucial step for highly sensitive and selective detection of biomolecules, hence, various technologies have been applied to separate biomolecules, such as deoxyribonucleic acid (DNA), protein, exosome, virus, etc. Among the various technologies, dielectrophoresis (DEP) has the significant advantage that the force can provide two different types of forces, attractive and repulsive DEP force, through simple adjustment in frequency or structure of microfluidic chips. Therefore, in this review, we focused on separation technologies based on DEP force and classified various separation technologies. First, the importance of biomolecules, general separation methods and various forces including DEP, electrophoresis (EP), electrothermal flow (ETF), electroosmosis (EO), magnetophoresis, acoustophoresis (ACP), hydrodynamic, etc., was described. Then, separating technologies applying only a single DEP force and dual force, moreover, applying other forces simultaneously with DEP force were categorized. In addition, advanced technologies applying more than two different kinds of forces, namely complex force, were introduced. Overall, we critically reviewed the state-of-the-art of converged various forces for detection of biomolecules with novelty of DEP.


Subject(s)
Electrochemical Techniques , Microfluidic Analytical Techniques , DNA/isolation & purification , Electrophoresis , Osmosis , Proteins/isolation & purification , Viruses/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...