Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Foods ; 10(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34828798

ABSTRACT

Lightly preserved seafood products, such as cold-smoked fish and fish gravlax, are traditionally consumed in Europe and are of considerable economic importance. This work aimed to compare three products that were obtained from the same batch of fish: cold-smoked salmon (CSS) stored under vacuum packaging (VP) or a modified atmosphere packaging (MAP) and VP salmon dill gravlax (SG). Classical microbiological analyses and 16S rRNA metabarcoding, biochemical analyses (trimethylamine, total volatile basic nitrogen (TVBN), biogenic amines, pH, volatile organic compounds (VOCs)) and sensory analyses (quantitative descriptive analysis) were performed on each product throughout their storage at a chilled temperature. The three products shared the same initial microbiota, which were mainly dominated by Photobacterium, Lactococcus and Lactobacillus genera. On day 28, the VP CSS ecosystem was mainly composed of Photobacterium and, to a lesser extent, Lactococcus and Lactobacillus genera, while Lactobacillus was dominant in the MAP CSS. The diversity was higher in the SG, which was mainly dominated by Enterobacteriaceae, Photobacterium, Lactobacillus and Lactococcus. Although the sensory spoilage was generally weak, gravlax was the most perishable product (slight increase in amine and acidic off-odors and flavors, fatty appearance, slight discoloration and drop in firmness), followed by the VP CSS, while the MAP CSS did not spoil. Spoilage was associated with an increase in the TVBN, biogenic amines and spoilage associated VOCs, such as decanal, nonanal, hexadecanal, benzaldehyde, benzeneacetaldehyde, ethanol, 3-methyl-1-butanol, 2,3-butanediol, 1-octen-3-ol, 2-butanone and 1-octen-3-one. This study showed that the processing and packaging conditions both had an effect on the microbial composition and the quality of the final product.

2.
Front Plant Sci ; 11: 257, 2020.
Article in English | MEDLINE | ID: mdl-32211010

ABSTRACT

Glucosinolates are defense-related secondary metabolites found in Brassicaceae. When Brassicaceae come under attack, glucosinolates are hydrolyzed into different forms of glucosinolate hydrolysis products (GHPs). Among the GHPs, isothiocyanates are the most comprehensively characterized defensive compounds, whereas the functional study of nitriles, another group of GHP, is still limited. Therefore, this study investigates whether 3-butenenitrile (3BN), a nitrile, can trigger the signaling pathways involved in the regulation of defense responses in Arabidopsis thaliana against biotic stresses. Briefly, the methodology is divided into three stages, (i) evaluate the physiological and biochemical effects of exogenous 3BN treatment on Arabidopsis, (ii) determine the metabolites involved in 3BN-mediated defense responses in Arabidopsis, and (iii) assess whether a 3BN treatment can enhance the disease tolerance of Arabidopsis against necrotrophic pathogens. As a result, a 2.5 mM 3BN treatment caused lesion formation in Arabidopsis Columbia (Col-0) plants, a process found to be modulated by nitric oxide (NO). Metabolite profiling revealed an increased production of soluble sugars, Krebs cycle associated carboxylic acids and amino acids in Arabidopsis upon a 2.5 mM 3BN treatment, presumably via NO action. Primary metabolites such as sugars and amino acids are known to be crucial components in modulating plant defense responses. Furthermore, exposure to 2.0 mM 3BN treatment began to increase the production of salicylic acid (SA) and jasmonic acid (JA) phytohormones in Arabidopsis Col-0 plants in the absence of lesion formation. The production of SA and JA in nitrate reductase loss-of function mutant (nia1nia2) plants was also induced by the 3BN treatments, with a greater induction for JA. The SA concentration in nia1nia2 plants was lower than in Col-0 plants, confirming the previously reported role of NO in controlling SA production in Arabidopsis. A 2.0 mM 3BN treatment prior to pathogen assays effectively alleviated the leaf lesion symptom of Arabidopsis Col-0 plants caused by Pectobacterium carotovorum ssp. carotovorum and Botrytis cinerea and reduced the pathogen growth on leaves. The findings of this study demonstrate that 3BN can elicit defense response pathways in Arabidopsis, which potentially involves a coordinated crosstalk between NO and phytohormone signaling.

3.
Front Plant Sci ; 11: 595190, 2020.
Article in English | MEDLINE | ID: mdl-33679815

ABSTRACT

The plants in the Epilobium genus are considered to have several important medicinal properties due to their unique chemical composition. Although metabolic profiles of medicinal plants are mainly controlled by genetic factors, their production is also to some degree influenced by environmental factors, thus, variations in the levels of phytochemicals may represent long-term ecological and evolutionary interactions. In order to depict the magnitude of natural variation in level of chemical compounds among conspecific populations of Epilobium hirsutum (n = 31) and E. parviflorum (n = 16), metabolite profiling of aerial parts of plants was performed with gas chromatography/mass spectrometry analysis. Putative identification and structure annotation revealed the presence of 74 compounds including 46 compounds considered secondary metabolites categorized into flavonoids (n = 8), phenolic acids (n = 26), steroids (n = 3), and terpenes (n = 5) across all populations. Although there was a considerable natural variation among conspecific populations, principal component analysis revealed a clear separation of populations of each species based on the second main principal component which was highly correlated with eight secondary metabolites. The level of secondary metabolites was significantly correlated between species (r = 0.91), suggesting shared metabolic pathways underlying the production of chemical compounds. In addition, redundancy and variance partitioning analyses by including bioclimatic variables and altitude revealed a significant contribution of elevation in explaining the total variation of secondary metabolites in E. hirsutum. Two-thirds of all secondary metabolites were significantly correlated with altitude in E. hirsutum. The large-scale geographic analyses of populations revealed additionally detected flavonoids and terpenes (E. hirsutum and E. parviflorum) and steroids (E. hirsutum) for the first time. This study provides significant information on additional chemical compounds found across the distribution range of the two ecologically important species of willow herb and emphasizes the importance of geographic-wide sampling as a valuable strategy to depict intraspecific and interspecific variability in chemical traits.

4.
Front Microbiol ; 10: 3103, 2019.
Article in English | MEDLINE | ID: mdl-32038547

ABSTRACT

Seafood and fishery products are very perishable commodities with short shelf-lives owing to rapid deterioration of their organoleptic and microbiological quality. Microbial growth and activity are responsible for up to 25% of food losses in the fishery industry. In this context and to meet consumer demand for minimally processed food, developing mild preservation technologies such as biopreservation represents a major challenge. In this work, we studied the use of six lactic acid bacteria (LAB), previously selected for their properties as bioprotective agents, for salmon dill gravlax biopreservation. Naturally contaminated salmon dill gravlax slices, with a commercial shelf-life of 21 days, were purchased from a French industrial company and inoculated by spraying with the protective cultures (PCs) to reach an initial concentration of 106 log CFU/g. PC impact on gravlax microbial ecosystem (cultural and acultural methods), sensory properties (sensory profiling test), biochemical parameters (pH, TMA, TVBN, biogenic amines) and volatilome was followed for 25 days of storage at 8°C in vacuum packaging. PC antimicrobial activity was also assessed in situ against Listeria monocytogenes. This polyphasic approach underlined two scenarios depending on the protective strain. Carnobacterium maltaromaticum SF1944, Lactococcus piscium EU2229 and Leuconostoc gelidum EU2249, were very competitive in the product, dominated the microbial ecosystem, and displayed antimicrobial activity against the spoilage microbiota and L. monocytogenes. The strains also expressed their own sensory and volatilome signatures. However, of these three strains, C. maltaromaticum SF1944 did not induce strong spoilage and was the most efficient for L. monocytogenes growth control. By contrast, Vagococcus fluvialis CD264, Carnobacterium inhibens MIP2551 and Aerococcus viridans SF1044 were not competitive, did not express strong antimicrobial activity and produced only few organic volatile compounds (VOCs). However, V. fluvialis CD264 was the only strain to extend the sensory quality, even beyond 25 days. This study shows that C. maltaromaticum SF1944 and V. fluvialis CD264 both have a promising potential as bioprotective cultures to ensure salmon gravlax microbial safety and sensorial quality, respectively.

5.
Chem Biodivers ; 15(9): e1800230, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29906333

ABSTRACT

Conspecific populations of plants in their native range are expected to show considerable variation due to long-term ecological and evolutionary factors. We investigated the levels of secondary metabolites in Heracleum including H. persicum a valuable medicinal plant to depict the magnitude of cryptic variation and the potential significance of novel chemical traits. The essential oil volatiles from fruits of 34 populations from different species of Heracleum in Iranian distribution range and a native of H. sphondylium and an invasive population of H. persicum from Norway were analyzed with GC/MS. Out of 48 compounds identified, a contrasting pattern in the level of two major compounds, octyl acetate and hexyl butyrate was found among all studied species. Interestingly, a significant geographic pattern was observed; the hexyl butyrate/octyl acetate ratio was high (range 1.8 - 3.2) in the northwestern Iranian populations of H. persicum compared to that in northern and central populations (range 0.3 - 0.9). Four populations from Zagros mountains also exhibited a unique composition. Anethole was found in two populations of H. persicum from central Zagros, which has not been previously reported for essential oil of fruits of Heracleum so far. The results suggest high efficiency of large scale sampling from distribution range of species in identifying novel compounds. The unique pattern of geographic structuring also provides novel information to unravel cryptic variation in Heracleum.


Subject(s)
Geography , Heracleum/chemistry , Oils, Volatile/chemistry , Cluster Analysis , Gas Chromatography-Mass Spectrometry , Heracleum/classification , Introduced Species , Iran , Norway , Plants, Medicinal/chemistry , Species Specificity
6.
PLoS One ; 13(2): e0193335, 2018.
Article in English | MEDLINE | ID: mdl-29474408

ABSTRACT

Phosphorus, an essential element for all living organisms, is a limiting nutrient in many regions of the ocean due to its fast recycling. Changes in phosphate (Pi) availability in aquatic systems affect diatom growth and productivity. We investigated the early adaptive mechanisms in the marine diatom Phaeodactylum tricornutum to P deprivation using a combination of transcriptomics, metabolomics, physiological and biochemical experiments. Our analysis revealed strong induction of gene expression for proteins involved in phosphate acquisition and scavenging, and down-regulation of processes such as photosynthesis, nitrogen assimilation and nucleic acid and ribosome biosynthesis. P deprivation resulted in alterations of carbon allocation through the induction of the pentose phosphate pathway and cytosolic gluconeogenesis, along with repression of the Calvin cycle. Reorganization of cellular lipids was indicated by coordinated induced expression of phospholipases, sulfolipid biosynthesis enzymes and a putative betaine lipid biosynthesis enzyme. A comparative analysis of nitrogen- and phosphorus-deprived P. tricornutum revealed both common and distinct regulation patterns in response to phosphate and nitrate stress. Regulation of central carbon metabolism and amino acid metabolism was similar, whereas unique responses were found in nitrogen assimilation and phosphorus scavenging in nitrogen-deprived and phosphorus-deprived cells, respectively.


Subject(s)
Adaptation, Physiological , Diatoms/metabolism , Nitrogen/deficiency , Phosphorus/deficiency , Carbon/metabolism , Diatoms/growth & development , Lipid Metabolism , Microscopy, Confocal , Oligonucleotide Array Sequence Analysis , Photosynthesis/physiology , Pigmentation/physiology , Real-Time Polymerase Chain Reaction , Transcriptome
7.
Sci Rep ; 6: 38990, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27976683

ABSTRACT

Both physical barriers and reactive phytochemicals represent two important components of a plant's defence system against environmental stress. However, these two defence systems have generally been studied independently. Here, we have taken an exclusive opportunity to investigate the connection between a chemical-based plant defence system, represented by the glucosinolate-myrosinase system, and a physical barrier, represented by the cuticle, using Arabidopsis myrosinase (thioglucosidase; TGG) mutants. The tgg1, single and tgg1 tgg2 double mutants showed morphological changes compared to wild-type plants visible as changes in pavement cells, stomatal cells and the ultrastructure of the cuticle. Extensive metabolite analyses of leaves from tgg mutants and wild-type Arabidopsis plants showed altered levels of cuticular fatty acids, fatty acid phytyl esters, glucosinolates, and indole compounds in tgg single and double mutants as compared to wild-type plants. These results point to a close and novel association between chemical defence systems and physical defence barriers.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Glucosinolates/metabolism , Glycoside Hydrolases/metabolism , Plant Stomata/metabolism , Arabidopsis/genetics , Arabidopsis/ultrastructure , Arabidopsis Proteins/genetics , Glucosinolates/genetics , Glycoside Hydrolases/genetics , Mutation , Plant Stomata/genetics , Plant Stomata/ultrastructure
8.
Front Plant Sci ; 6: 826, 2015.
Article in English | MEDLINE | ID: mdl-26528299

ABSTRACT

To assess underlying metabolic processes and regulatory mechanisms during cold exposure of strawberry, integrative "omic" approaches were applied to Fragaria × ananassa Duch. 'Korona.' Both root and leaf tissues were examined for responses to the cold acclimation processes. Levels of metabolites, proteins, and transcripts in tissues from plants grown at 18°C were compared to those following 1-10 days of cold (2°C) exposure. When leaves and roots were subjected to GC/TOF-MS-based metabolite profiling, about 160 compounds comprising mostly structurally annotated primary and secondary metabolites, were found. Overall, 'Korona' showed a modest increase of protective metabolites such as amino acids (aspartic acid, leucine, isoleucine, and valine), pentoses, phosphorylated and non-phosphorylated hexoses, and distinct compounds of the raffinose pathway (galactinol and raffinose). Distinctive responses were observed in roots and leaves. By 2DE proteomics a total of 845 spots were observed in leaves; 4.6% changed significantly in response to cold. Twenty-one proteins were identified, many of which were associated with general metabolism or photosynthesis. Transcript levels in leaves were determined by microarray, where dozens of cold associated transcripts were quantitatively characterized, and levels of several potential key contributors (e.g., the dehydrin COR47 and GADb) to cold tolerance were confirmed by qRT-PCR. Cold responses are placed within the existing knowledge base of low temperature-induced changes in plants, allowing an evaluation of the uniqueness or generality of Fragaria responses in photosynthetic tissues. Overall, the cold response characteristics of 'Korona' are consistent with a moderately cold tolerant plant.

9.
J Exp Bot ; 66(20): 6281-96, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26163699

ABSTRACT

Algal growth is strongly affected by nitrogen (N) availability. Diatoms, an ecologically important group of unicellular algae, have evolved several acclimation mechanisms to cope with N deprivation. In this study, we integrated physiological data with transcriptional and metabolite data to reveal molecular and metabolic modifications in N-deprived conditions in the marine diatom Phaeodactylum tricornutum. Physiological and metabolite measurements indicated that the photosynthetic capacity and chlorophyll content of the cells decreased, while neutral lipids increased in N-deprived cultures. Global gene expression analysis showed that P. tricornutum responded to N deprivation through an increase in N transport, assimilation, and utilization of organic N resources. Following N deprivation, reduced biosynthesis and increased recycling of N compounds like amino acids, proteins, and nucleic acids was observed at the transcript level. The majority of the genes associated with photosynthesis and chlorophyll biosynthesis were also repressed. Carbon metabolism was restructured through downregulation of the Calvin cycle and chrysolaminarin biosynthesis, and co-ordinated upregulation of glycolysis, the tricarboxylic acid cycle, and pyruvate metabolism, leading to funnelling of carbon sources to lipid metabolism. Finally, reallocation of membrane lipids and induction of de novo triacylglycerol biosynthesis directed cells to accumulation of neutral lipids.


Subject(s)
Diatoms/metabolism , Lipid Metabolism , Nitrogen/deficiency , Triglycerides/metabolism , Diatoms/growth & development , Gene Expression Profiling
10.
Molecules ; 20(2): 3431-62, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25690297

ABSTRACT

Metabolite profiling has been established as a modern technology platform for the description of complex chemical matrices and compound identification in biological samples. Gas chromatography coupled with mass spectrometry (GC-MS) in particular is a fast and accurate method widely applied in diagnostics, functional genomics and for screening purposes. Following solvent extraction and derivatization, hundreds of metabolites from different chemical groups can be characterized in one analytical run. Besides sugars, acids, and polyols, diverse phenolic and other cyclic metabolites can be efficiently detected by metabolite profiling. The review describes own results from plant research to exemplify the applicability of GC-MS profiling and concurrent detection and identification of phenolics and other cyclic structures.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Phenols , Plants , Phenols/analysis , Phenols/metabolism , Plants/chemistry , Plants/metabolism
11.
J Exp Bot ; 66(2): 579-92, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25563968

ABSTRACT

The Brassicaceae family is characterized by a unique defence mechanism known as the 'glucosinolate-myrosinase' system. When insect herbivores attack plant tissues, glucosinolates are hydrolysed by the enzyme myrosinase (EC 3.2.1.147) into a variety of degradation products, which can deter further herbivory. This process has been described as 'the mustard oil bomb'. Additionally, insect damage induces the production of glucosinolates, myrosinase, and other defences. Brassica napus seeds have been genetically modified to remove myrosinase-containing myrosin cells. These plants are termed MINELESS because they lack myrosin cells, the so-called toxic mustard oil mines. Here, we examined the interaction between B. napus wild-type and MINELESS plants and the larvae of the cabbage moth Mamestra brassicae. No-choice feeding experiments showed that M. brassicae larvae gained less weight and showed stunted growth when feeding on MINELESS plants compared to feeding on wild-type plants. M. brassicae feeding didn't affect myrosinase activity in MINELESS plants, but did reduce it in wild-type seedlings. M. brassicae feeding increased the levels of indol-3-yl-methyl, 1-methoxy-indol-3-yl-methyl, and total glucosinolates in both wild-type and MINELESS seedlings. M. brassicae feeding affected the levels of glucosinolate hydrolysis products in both wild-type and MINELESS plants. Transcriptional analysis showed that 494 and 159 genes were differentially regulated after M. brassicae feeding on wild-type and MINELESS seedlings, respectively. Taken together, the outcomes are very interesting in terms of analysing the role of myrosin cells and the glucosinolate-myrosinase defence system in response to a generalist cabbage moth, suggesting that similar studies with other generalist or specialist insect herbivores, including above- and below-ground herbivores, would be useful.


Subject(s)
Brassica napus/immunology , Brassica napus/parasitology , Moths/physiology , Mutation/genetics , Plant Diseases/immunology , Plant Diseases/parasitology , Animals , Brassica napus/genetics , Brassica napus/growth & development , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Glucosinolates/metabolism , Glycoside Hydrolases/metabolism , Herbivory , Hydrolysis , Larva/physiology , Oxylipins/metabolism , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Seedlings/parasitology , Signal Transduction/genetics , Tryptophan/biosynthesis
12.
Mar Drugs ; 14(1): 9, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26729140

ABSTRACT

We have searched for special characteristics in growth, protein expression, fatty acids and volatile organic compounds (VOCs) in a local Phaeodactylum tricornutum Bohlin strain (Bergen Marine Biobank), by comparing it with a common accession strain (CCAP). Differences in growth and expressed proteins were detected between the BMB strain and the CCAP strain, and the BMB strain reached the highest cell densities under the given growth conditions. Fatty acid (FA) analyses showed highest relative eicosapentaenoic acid (EPA) levels in the exponential phase (25.73% and 28.31%), and highest levels of palmitoleic acid (16:1 n-7) in the stationary phase (46.36% and 43.66%) in the BMB and CCAP strain, respectively. The most striking finding of the VOCs analyses was the relatively high levels of ectocarpene, 6-((1E)-butenyl)-1,4-cycloheptadiene, hormosirene, and desmarestene and structurally related compounds, which were exclusively detected in the BMB strain. Many of the VOCs detected in the CCAP and, in particular, in the BMB strain have been reported as antimicrobial agents. We suggest that the array of pheromones and antimicrobial substances could be part of an allelopathic strategy of the BMB strain, dominated by oval cells, thus reflecting the benthic life stage of this morphological form. These findings show the potential for bioactive metabolites in the BMB strain.


Subject(s)
Diatoms/chemistry , Diatoms/metabolism , Estuaries , Humans , Norway , Seawater , Volatile Organic Compounds/chemistry , Water Microbiology
13.
Front Plant Sci ; 5: 706, 2014.
Article in English | MEDLINE | ID: mdl-25566281

ABSTRACT

Environmental changes such as early spring and warm spells induce bud burst and photosynthetic processes in cold-acclimated coniferous trees and consequently, cellular metabolism in overwintering needles and buds. The purpose of the study was to examine metabolism in conifers under forced deacclimation (artificially induced spring) by exposing shoots of Picea abies (boreal species) and Abies alba (temperate species) to a greenhouse environment (22°C, 16/8 h D/N cycle) over a 9 weeks period. Each week, we scored bud opening and collected samples for GC/MS-based metabolite profiling. We detected a total of 169 assigned metabolites and 80 identified metabolites, comprising compounds such as mono- and disaccharides, Krebs cycle acids, amino acids, polyols, phenolics, and phosphorylated structures. Untargeted multivariate statistical analysis based on PCA and cluster analysis segregated samples by species, tissue type, and stage of tissue deacclimations. Similar patterns of metabolic regulation in both species were observed in buds (amino acids, Krebs cycle acids) and needles (hexoses, pentoses, and Krebs cycle acids). Based on correlation of bud opening score with compound levels, distinct metabolites could be associated with bud and shoot development, including amino acids, sugars, and acids with known osmolyte function, and secondary metabolites. This study has shed light on how elevated temperature affects metabolism in buds and needles of conifer species during the deacclimation phase, and contributes to the discussion about how phenological characters in conifers may respond to future global warming.

14.
Planta ; 237(1): 265-77, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23014928

ABSTRACT

The use of artificial freezing tests, identification of biomarkers linked to or directly involved in the low-temperature tolerance processes, could prove useful in applied strawberry breeding. This study was conducted to identify genotypes of diploid strawberry that differ in their tolerance to low-temperature stress and to investigate whether a set of candidate proteins and metabolites correlate with the level of tolerance. 17 Fragaria vesca, 2 F. nilgerrensis, 2 F. nubicola, and 1 F. pentaphylla genotypes were evaluated for low-temperature tolerance. Estimates of temperatures where 50 % of the plants survived (LT50) ranged from -4.7 to -12.0 °C between the genotypes. Among the F. vesca genotypes, the LT50 varied from -7.7 °C to -12.0 °C. Among the most tolerant were three F. vesca ssp. bracteata genotypes (FDP821, NCGR424, and NCGR502), while a F. vesca ssp. californica genotype (FDP817) was the least tolerant (LT50) -7.7 °C). Alcohol dehydrogenase (ADH), total dehydrin expression, and content of central metabolism constituents were assayed in select plants acclimated at 2 °C. The LT50 estimates and the expression of ADH and total dehydrins were highly correlated (r(adh) = -0.87, r (dehyd) = -0.82). Compounds related to the citric acid cycle were quantified in the leaves during acclimation. While several sugars and acids were significantly correlated to the LT50 estimates early in the acclimation period, only galactinol proved to be a good LT50 predictor after 28 days of acclimation (r(galact) = 0.79). It is concluded that ADH, dehydrins, and galactinol show great potential to serve as biomarkers for cold tolerance in diploid strawberry.


Subject(s)
Alcohol Dehydrogenase/metabolism , Cold Temperature , Fragaria/metabolism , Plant Proteins/metabolism , Acclimatization , Alcohol Dehydrogenase/genetics , Altitude , Blotting, Western , Cluster Analysis , Diploidy , Fragaria/genetics , Freezing , Gas Chromatography-Mass Spectrometry , Genotype , Linear Models , Metabolomics/classification , Metabolomics/methods , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Principal Component Analysis , Species Specificity
15.
J Agric Food Chem ; 60(42): 10406-14, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-23033879

ABSTRACT

After pollination outdoors, individual bilberry plants from two Northern and two Southern clones were studied for climatic effects on berry yield and quality in a controlled phytotrone experiment at 12 and 18 °C. At each temperature, the following light treatments were tested: (1) 12 h natural light, (2) 24 h natural light, and (3) 24 h natural light plus red light. The first experimental year there was no difference in yield between temperatures; however, the second experimental year the berry yields was significantly higher at 18 °C. Berry ripening was faster in the Northern than in the Southern clones at 12 °C. Northern clones also showed significantly higher contents of total anthocyanins, all measured anthocyanin derivatives, total phenolics, malic acid and sucrose. Metabolic profiling revealed higher levels of flavanols, hydroxycinnamic acids, quinic acid and carbohydrates at 12 °C.


Subject(s)
Photoperiod , Temperature , Vaccinium myrtillus/chemistry , Vaccinium myrtillus/growth & development , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry
16.
Plant Physiol ; 159(4): 1787-805, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22689892

ABSTRACT

To gain insight into the molecular basis contributing to overwintering hardiness, a comprehensive proteomic analysis comparing crowns of octoploid strawberry (Fragaria × ananassa) cultivars that differ in freezing tolerance was conducted. Four cultivars were examined for freeze tolerance and the most cold-tolerant cultivar ('Jonsok') and least-tolerant cultivar ('Frida') were compared with a goal to reveal how freezing tolerance is achieved in this distinctive overwintering structure and to identify potential cold-tolerance-associated biomarkers. Supported by univariate and multivariate analysis, a total of 63 spots from two-dimensional electrophoresis analysis and 135 proteins from label-free quantitative proteomics were identified as significantly differentially expressed in crown tissue from the two strawberry cultivars exposed to 0-, 2-, and 42-d cold treatment. Proteins identified as cold-tolerance-associated included molecular chaperones, antioxidants/detoxifying enzymes, metabolic enzymes, pathogenesis-related proteins, and flavonoid pathway proteins. A number of proteins were newly identified as associated with cold tolerance. Distinctive mechanisms for cold tolerance were characterized for two cultivars. In particular, the 'Frida' cold response emphasized proteins specific to flavonoid biosynthesis, while the more freezing-tolerant 'Jonsok' had a more comprehensive suite of known stress-responsive proteins including those involved in antioxidation, detoxification, and disease resistance. The molecular basis for 'Jonsok'-enhanced cold tolerance can be explained by the constitutive level of a number of proteins that provide a physiological stress-tolerant poise.


Subject(s)
Adaptation, Physiological , Cold Temperature , Fragaria/physiology , Proteomics/methods , Acclimatization/genetics , Antioxidants/metabolism , Biosynthetic Pathways , Chromatography, Liquid , Cluster Analysis , Crosses, Genetic , Disease Resistance , Electrophoresis, Gel, Two-Dimensional , Flavonoids/metabolism , Fragaria/genetics , Fragaria/metabolism , Fragaria/microbiology , Freezing , Gene Expression Regulation, Plant , Inactivation, Metabolic , Mass Spectrometry , Molecular Sequence Data , Plant Proteins/genetics , Plant Proteins/metabolism , Principal Component Analysis , Propanols/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Staining and Labeling
17.
Phytochemistry ; 77: 99-109, 2012 May.
Article in English | MEDLINE | ID: mdl-22370221

ABSTRACT

Winter freezing damage is a crucial factor in overwintering crops such as the octoploid strawberry (Fragaria × ananassa Duch.) when grown in a perennial cultivation system. Our study aimed at assessing metabolic processes and regulatory mechanisms in the close-related diploid model woodland strawberry (Fragaria vescaL.) during a 10-days cold acclimation experiment. Based on gas chromatography/time-of-flight-mass spectrometry (GC/TOF-MS) metabolite profiling of three F. vesca genotypes, clear distinctions could be made between leaves and non-photosynthesizing roots, underscoring the evolvement of organ-dependent cold acclimation strategies. Carbohydrate and amino acid metabolism, photosynthetic acclimation, and antioxidant and detoxification systems (ascorbate pathway) were strongly affected. Metabolic changes in F. vesca included the strong modulation of central metabolism, and induction of osmotically-active sugars (fructose, glucose), amino acids (aspartic acid), and amines (putrescine). In contrast, a distinct impact on the amino acid proline, known to be cold-induced in other plant systems, was conspicuously absent. Levels of galactinol and raffinose, key metabolites of the cold-inducible raffinose pathway, were drastically enhanced in both leaves and roots throughout the cold acclimation period of 10 days. Furthermore, initial freezing tests and multifaceted GC/TOF-MS data processing (Venn diagrams, independent component analysis, hierarchical clustering) showed that changes in metabolite pools of cold-acclimated F. vesca were clearly influenced by genotype.


Subject(s)
Cold-Shock Response , Fragaria/metabolism , Acclimatization , Diploidy , Fragaria/genetics , Fragaria/physiology , Freezing , Gas Chromatography-Mass Spectrometry , Genetic Markers , Genotype , Metabolic Networks and Pathways , Metabolome
18.
Br J Nutr ; 107(11): 1570-90, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21914238

ABSTRACT

The effects of combining soyasaponins with plant ingredients on intestinal function and fish health were investigated in an 80 d study with Atlantic salmon (270 g) distributed thirty each into twenty-four tanks with seawater. Soyasaponins were supplemented (2 g/kg) to diets with maize gluten (MG), pea protein concentrate (PPC) and sunflower (SFM), rapeseed (RSM) or horsebean meals. A diet with soyabean meal (SBM) and another with wheat gluten and soyasaponins served as reference diets. Marked soyasaponin effects were observed when combined with PPC. This combination induced inflammation in the distal intestine (DI) similar to SBM, reduced feed intake, apparent digestibility of lipid, most amino acids and ash, decreased bile salt levels in intestinal chyme and decreased leucine aminopeptidase (LAP) activity but increased trypsin activity in the DI. No enteritis was observed in other diet groups, but small consistent negative soyasaponin effects were seen on lipid and fatty acid digestibility, faecal DM and LAP activity of the DI. Soyasaponin combination with RSM reduced digestibility of all nutrients including minerals. The mineral effect was also seen for SFM, whereas with MG and SFM a positive soyasaponin effect on feed intake was observed. Caution should be exercised to avoid ingredient combinations giving high saponin levels, a condition that appears to be a key factor in diet-induced enteritis together with certain plant ingredients.


Subject(s)
Animal Feed/adverse effects , Diet/veterinary , Fish Diseases/etiology , Gastroenteritis/veterinary , Salmo salar/growth & development , Saponins/adverse effects , Animal Feed/analysis , Animals , Aquaculture , Diet/adverse effects , Dietary Fats/metabolism , Dietary Proteins/metabolism , Digestion , Energy Intake , Fish Diseases/immunology , Fish Diseases/metabolism , Fish Diseases/pathology , Fish Proteins/metabolism , Gastroenteritis/etiology , Gastroenteritis/metabolism , Gastroenteritis/pathology , Intestine, Large/enzymology , Intestine, Large/immunology , Intestine, Large/pathology , Leucyl Aminopeptidase/metabolism , Pisum sativum/adverse effects , Pisum sativum/chemistry , Plant Proteins/metabolism , Salmo salar/immunology , Salmo salar/metabolism , Seeds/adverse effects , Seeds/chemistry , Glycine max/adverse effects , Glycine max/chemistry , Weight Gain
19.
J Exp Bot ; 62(14): 4975-93, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21778185

ABSTRACT

Oilseed rape and other crop plants of the family Brassicaceae contain a unique defence system known as the glucosinolate-myrosinase system or the 'mustard oil bomb'. The 'mustard oil bomb' which includes myrosinase and glucosinolates is triggered by abiotic and biotic stress, resulting in the formation of toxic products such as nitriles and isothiocyanates. Myrosinase is present in specialist cells known as 'myrosin cells' and can also be known as toxic mines. The myrosin cell idioblasts of Brassica napus were genetically reprogrammed to undergo controlled cell death (ablation) during seed development. These myrosin cell-free plants have been named MINELESS as they lack toxic mines. This has led to the production of oilseed rape with a significant reduction both in myrosinase levels and in the hydrolysis of glucosinolates. Even though the myrosinase activity in MINELESS was very low compared with the wild type, variation was observed. This variability was overcome by producing homozygous seeds. A microspore culture technique involving non-fertile haploid MINELESS plants was developed and these plants were treated with colchicine to produce double haploid MINELESS plants with full fertility. Double haploid MINELESS plants had significantly reduced myrosinase levels and glucosinolate hydrolysis products. Wild-type and MINELESS plants exhibited significant differences in growth parameters such as plant height, leaf traits, matter accumulation, and yield parameters. The growth and developmental pattern of MINELESS plants was relatively slow compared with the wild type. The characteristics of the pure double haploid MINELESS plant are described and its importance for future biochemical, agricultural, dietary, functional genomics, and plant defence studies is discussed.


Subject(s)
Brassica napus/enzymology , Glucosinolates/metabolism , Glycoside Hydrolases/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/enzymology , Seeds/genetics , Brassica napus/cytology , Brassica napus/genetics , Brassica napus/metabolism , Glycoside Hydrolases/genetics , Haploidy , Plant Proteins/genetics , Plants, Genetically Modified/cytology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Seeds/cytology , Seeds/enzymology , Seeds/metabolism
20.
Chem Biodivers ; 8(4): 614-23, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21480507

ABSTRACT

Potential toxicity, costs, and drug-resistant pathogens necessitate the development of new antileishmanial agents. Medicinal and aromatic plants constitute a major source of natural organic compounds. In this study, essential oils of Artemisia absinthium L. and Echinops kebericho Mesfin were investigated by GC and GC/MS analyses. Isolated oils were screened for antileishmanial activity against two Leishmania strains (L. aethiopica and L. donovani), and toxicity on the human monocytic leukemia (THP-1) cell line and red blood cells in vitro. GC/MS Analysis revealed 65 compounds (93.74%) for Artemisia absinthium and 43 compounds (92.85%) for Echinops kebericho oil. The oils contained the oxygenated monoterpene camphor (27.40%) and the sesquiterpene lactone dehydrocostus lactone (41.83%) as major constituents, respectively. Both oils showed activity against promastigote (MIC 0.0097-0.1565 µl/ml) and axenic amastigote forms (EC(50) 0.24-42.00 nl/ml) of both leishmania species. Weak hemolytic effect was observed for both oils, showing a slightly decreased selectivity index (SI 0.8-19.2) against the THP-1 cell line. Among the two oils tested, E. kebericho exerted strong antileishmanial activity that was even higher than that of amphotericin B with significant cytotoxicity. This study, therefore, demonstrated the potential use of both oils as source of novel agents for the treatment of leishmaniasis.


Subject(s)
Antiprotozoal Agents/pharmacology , Artemisia absinthium/chemistry , Echinops Plant/chemistry , Leishmania/drug effects , Leishmaniasis/drug therapy , Oils, Volatile/pharmacology , Antiprotozoal Agents/adverse effects , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Cell Line , Cell Survival/drug effects , Gas Chromatography-Mass Spectrometry , Hemolysis/drug effects , Humans , Microbial Sensitivity Tests , Oils, Volatile/adverse effects , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...