Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Planta Med ; 89(12): 1178-1189, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36977488

ABSTRACT

Chemical investigation of the endophyte Pseudofusicoccum stromaticum CMRP4328 isolated from the medicinal plant Stryphnodendron adstringens yielded ten compounds, including two new dihydrochromones, paecilins Q (1: ) and R (2: ). The antifungal activity of the isolated metabolites was assessed against an important citrus pathogen, Phyllosticta citricarpa. Cytochalasin H (6: ) (78.3%), phomoxanthone A (3: ) (70.2%), phomoxanthone B (4: ) (63.1%), and paecilin Q (1: ) (50.5%) decreased in vitro the number of pycnidia produced by P. citricarpa, which are responsible for the disease dissemination in orchards. In addition, compounds 3: and 6: inhibited the development of citrus black spot symptoms in citrus fruits. Cytochalasin H (6: ) and one of the new compounds, paecilin Q (1: ), appear particularly promising, as they showed strong activity against this citrus pathogen, and low or no cytotoxic activity. The strain CMRP4328 of P. stromaticum and its metabolites deserve further investigation for the control of citrus black spot disease.


Subject(s)
Antifungal Agents , Citrus , Antifungal Agents/pharmacology , Plant Diseases/prevention & control , Plant Diseases/microbiology , Endophytes
2.
ChemMedChem ; 18(3): e202200368, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36342449

ABSTRACT

DNA coordinating platinum (Pt) containing compounds cisplatin and carboplatin have been used for the treatment of ovarian cancer therapy for four decades. However, recurrent Pt-resistant cancers are a major cause of mortality. To combat Pt-resistant ovarian cancers, we designed and synthesized a conjugate of an anticancer drug mithramycin with a reactive Pt(II) bearing moiety, which we termed mithplatin. The conjugates displayed both the Mg2+ -dependent noncovalent DNA binding characteristic of mithramycin and the covalent crosslinking to DNA of the Pt. The conjugate was three times as potent as cisplatin against ovarian cancer cells. The DNA lesions caused by the conjugate led to the generation of DNA double-strand breaks, as also observed with cisplatin. Nevertheless, the conjugate was highly active against both Pt-sensitive and Pt-resistant ovarian cancer cells. This study paves the way to developing mithplatins to combat Pt-resistant ovarian cancers.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Humans , Female , Cisplatin/pharmacology , Cisplatin/chemistry , Plicamycin/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , DNA/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm
3.
Front Microbiol ; 12: 714750, 2021.
Article in English | MEDLINE | ID: mdl-34539608

ABSTRACT

Plant diseases caused by phytopathogens are responsible for significant crop losses worldwide. Resistance induction and biological control have been exploited in agriculture due to their enormous potential. In this study, we investigated the antimicrobial potential of endophytic fungi of leaves and petioles of medicinal plants Vochysia divergens and Stryphnodendron adstringens located in two regions of high diversity in Brazil, Pantanal, and Cerrado, respectively. We recovered 1,304 fungal isolates and based on the characteristics of the culture, were assigned to 159 phenotypes. One isolate was selected as representative of each phenotype and studied for antimicrobial activity against phytopathogens. Isolates with better biological activities were identified based on DNA sequences and phylogenetic analyzes. Among the 159 representative isolates, extracts from 12 endophytes that inhibited the mycelial growth (IG) of Colletotrichum abscissum (≥40%) were selected to expand the antimicrobial analysis. The minimum inhibitory concentrations (MIC) of the extracts were determined against citrus pathogens, C. abscissum, Phyllosticta citricarpa and Xanthomonas citri subsp. citri and the maize pathogen Fusarium graminearum. The highest activity against C. abscissum were from extracts of Pseudofusicoccum stromaticum CMRP4328 (IG: 83% and MIC: 40 µg/mL) and Diaporthe vochysiae CMRP4322 (IG: 75% and MIC: 1 µg/mL), both extracts also inhibited the development of post-bloom fruit drop symptoms in citrus flowers. The extracts were promising in inhibiting the mycelial growth of P. citricarpa and reducing the production of pycnidia in citrus leaves. Among the isolates that showed activity, the genus Diaporthe was the most common, including the new species D. cerradensis described in this study. In addition, high performance liquid chromatography, UV detection, and mass spectrometry and thin layer chromatography analyzes of extracts produced by endophytes that showed high activity, indicated D. vochysiae CMRP4322 and P. stromaticum CMRP4328 as promising strains that produce new bioactive natural products. We report here the capacity of endophytic fungi of medicinal plants to produce secondary metabolites with biological activities against phytopathogenic fungi and bacteria. The description of the new species D. cerradensis, reinforces the ability of medicinal plants found in Brazil to host a diverse group of fungi with biotechnological potential.

4.
J Nat Prod ; 84(7): 1930-1940, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34170698

ABSTRACT

Himalaquinones A-G, seven new anthraquinone-derived metabolites, were obtained from the Himalayan-based Streptomyces sp. PU-MM59. The chemical structures of the new compounds were identified based on cumulative analyses of HRESIMS and NMR spectra. Himalaquinones A-F were determined to be unique anthraquinones that contained unusual C-4a 3-methylbut-3-enoic acid aromatic substitutions, while himalaquinone G was identified as a new 5,6-dihydrodiol-bearing angucyclinone. Comparative bioactivity assessment (antimicrobial, cancer cell line cytotoxicity, impact on 4E-BP1 phosphorylation, and effect on axolotl embryo tail regeneration) revealed cytotoxic landomycin and saquayamycin analogues to inhibit 4E-BP1p and inhibit regeneration. In contrast, himalaquinone G, while also cytotoxic and a regeneration inhibitor, did not affect 4E-BP1p status at the doses tested. As such, this work implicates a unique mechanism for himalaquinone G and possibly other 5,6-dihydrodiol-bearing angucyclinones.


Subject(s)
Anthraquinones/pharmacology , Antineoplastic Agents/pharmacology , Streptomyces/chemistry , Ambystoma mexicanum , Aminoglycosides/isolation & purification , Aminoglycosides/pharmacology , Animals , Anthraquinones/isolation & purification , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Humans , Microbial Sensitivity Tests , Molecular Structure , Pakistan , Soil Microbiology
5.
Biomedicines ; 9(1)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445667

ABSTRACT

Ovarian cancer is a highly deadly malignancy in which recurrence is considered incurable. Resistance to platinum-based chemotherapy bodes a particularly abysmal prognosis, underscoring the need for novel therapeutic agents and strategies. The use of mithramycin, an antineoplastic antibiotic, has been previously limited by its narrow therapeutic window. Recent advances in semisynthetic methods have led to mithramycin analogs with improved pharmacological profiles. Mithramycin inhibits the activity of the transcription factor Sp1, which is closely linked with ovarian tumorigenesis and platinum-resistance. This article summarizes recent clinical developments related to mithramycin and postulates a role for the use of mithramycin, or its analog, in the treatment of platinum-resistant ovarian cancer.

6.
Commun Chem ; 4(1): 162, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-36697631

ABSTRACT

Landomycins are angucyclines with promising antineoplastic activity produced by Streptomyces bacteria. The aglycone landomycinone is the distinctive core, while the oligosaccharide chain differs within derivatives. Herein, we report that landomycins spontaneously form Michael adducts with biothiols, including reduced cysteine and glutathione, both cell-free or intracellularly involving the benz[a]anthraquinone moiety of landomycinone. While landomycins generally do not display emissive properties, the respective Michael adducts exerted intense blue fluorescence in a glycosidic chain-dependent manner. This allowed label-free tracking of the short-lived nature of the mono-SH-adduct followed by oxygen-dependent evolution with addition of another SH-group. Accordingly, hypoxia distinctly stabilized the fluorescent mono-adduct. While extracellular adduct formation completely blocked the cytotoxic activity of landomycins, intracellularly it led to massively decreased reduced glutathione levels. Accordingly, landomycin E strongly synergized with glutathione-depleting agents like menadione but exerted reduced activity under hypoxia. Summarizing, landomycins represent natural glutathione-depleting agents and fluorescence probes for intracellular anthraquinone-based angucycline metabolism.

7.
Structure ; 29(5): 404-412.e4, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33275876

ABSTRACT

ETS family transcription factors of ERG and FLI1 play a key role in oncogenesis of prostate cancer and Ewing sarcoma by binding regulatory DNA sites and interfering with function of other factors. Mithramycin (MTM) is an anti-cancer, DNA binding natural product that functions as a potent antagonist of ERG and FLI1 by an unknown mechanism. We present a series of crystal structures of the DNA binding domain (DBD) of ERG/FLI1 culminating in a structure of a high-order complex of the ERG/FLI1 DBD, transcription factor Runx2, core-binding factor beta (Cbfß), and MTM on a DNA enhancer site, along with supporting DNA binding studies using MTM and its analogues. Taken together, these data provide insight into allosteric mechanisms underlying ERG and FLI1 transactions and their disruption by MTM analogues.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Plicamycin/pharmacology , Proto-Oncogene Protein c-fli-1/chemistry , Allosteric Regulation/drug effects , Antibiotics, Antineoplastic/chemistry , Binding Sites , Core Binding Factor Alpha 1 Subunit/chemistry , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor beta Subunit/chemistry , Core Binding Factor beta Subunit/metabolism , Humans , Molecular Docking Simulation , Plicamycin/chemistry , Protein Binding , Proto-Oncogene Protein c-fli-1/metabolism , Transcriptional Regulator ERG/chemistry , Transcriptional Regulator ERG/metabolism
8.
J Med Chem ; 63(22): 14067-14086, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33191745

ABSTRACT

Mithramycin A (MTM) inhibits the oncogenic transcription factor EWS-FLI1 in Ewing sarcoma, but poor pharmacokinetics (PK) and toxicity limit its clinical use. To address this limitation, we report an efficient MTM 2'-oxime (MTMox) conjugation strategy for rapid MTM diversification. Comparative cytotoxicity assays of 41 MTMox analogues using E-twenty-six (ETS) fusion-dependent and ETS fusion-independent cancer cell lines revealed improved ETS fusion-independent/dependent selectivity indices for select 2'-conjugated analogues as compared to MTM. Luciferase-based reporter assays demonstrated target engagement at low nM concentrations, and molecular assays revealed that analogues inhibit the transcriptional activity of EWS-FLI1. These in vitro screens identified MTMox32E (a Phe-Trp dipeptide-based 2'-conjugate) for in vivo testing. Relative to MTM, MTMox32E displayed an 11-fold increase in plasma exposure and improved efficacy in an Ewing sarcoma xenograft. Importantly, these studies are the first to point to simple C3 aliphatic side-chain modification of MTM as an effective strategy to improve PK.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/pharmacokinetics , Bone Neoplasms/drug therapy , Oximes/chemistry , Plicamycin/chemistry , Sarcoma, Ewing/drug therapy , Animals , Antibiotics, Antineoplastic/chemistry , Apoptosis , Bone Neoplasms/pathology , Cell Proliferation , Female , Humans , Mice , Mice, SCID , Sarcoma, Ewing/pathology , Tissue Distribution , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
Folia Microbiol (Praha) ; 65(2): 381-392, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31401763

ABSTRACT

Citrus black spot (CBS) and post-bloom fruit drop (PFD), caused by Phyllosticta citricarpa and Colletotrichum abscissum, respectively, are two important citrus diseases worldwide. CBS depreciates the market value and prevents exportation of citrus fruits to Europe. PFD under favorable climatic conditions can cause the abscission of flowers, thereby reducing citrus production by 80%. An ecofriendly alternative to control plant diseases is the use of endophytic microorganisms, or secondary metabolites produced by them. Strain LGMF1631, close related to Diaporthe cf. heveae 1, was isolated from the medicinal plant Stryphnodendron adstringens and showed significant antimicrobial activity, in a previous study. In view of the potential presented by strain LGMF1631, and the absence of chemical data for secondary metabolites produced by D. cf. heveae, we decided to characterize the compounds produced by strain LGMF1631. Based on ITS, TEF1, and TUB phylogenetic analysis, strain LGMF1631 was confirmed to belong to D. cf. heveae 1. Chemical assessment of the fungal strain LGMF1631 revealed one new seco-dihydroisocoumarin [cladosporin B (1)] along with six other related, already known dihydroisocoumarin derivatives and one monoterpene [(-)-(1S,2R,3S,4R)-p-menthane-1,2,3-triol (8)]. Among the isolated metabolites, compound 5 drastically reduced the growth of both phytopathogens in vitro and completely inhibited the development of CBS and PFD in citrus fruits and flowers. In addition, compound 5 did not show toxicity against human cancer cell lines or citrus leaves, at concentrations higher than used for the inhibition of the phytopathogens, suggesting the potential use of (-)-(3R,4R)-cis-4-hydroxy-5-methylmellein (5) to control citrus diseases.


Subject(s)
Ascomycota/drug effects , Citrus/microbiology , Fungicides, Industrial/pharmacology , Isocoumarins/pharmacology , Saccharomycetales/chemistry , Ascomycota/physiology , Colletotrichum/drug effects , Colletotrichum/physiology , Fabaceae/microbiology , Fruit/microbiology , Fungicides, Industrial/chemistry , Fungicides, Industrial/metabolism , Isocoumarins/chemistry , Isocoumarins/metabolism , Phylogeny , Plant Diseases/microbiology , Plant Leaves/microbiology , Saccharomycetales/classification , Saccharomycetales/genetics , Saccharomycetales/isolation & purification
10.
Angew Chem Int Ed Engl ; 59(2): 826-832, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31702856

ABSTRACT

MtmOIV and MtmW catalyze the final two reactions in the mithramycin (MTM) biosynthetic pathway, the Baeyer-Villiger opening of the fourth ring of premithramycin B (PMB), creating the C3 pentyl side chain, strictly followed by reduction of the distal keto group on the new side chain. Unexpectedly this results in a C2 stereoisomer of mithramycin, iso-mithramycin (iso-MTM). Iso-MTM undergoes a non-enzymatic isomerization to MTM catalyzed by Mg2+ ions. Crystal structures of MtmW and its complexes with co-substrate NADPH and PEG, suggest a catalytic mechanism of MtmW. The structures also show that a tetrameric assembly of this enzyme strikingly resembles the ring-shaped ß subunit of a vertebrate ion channel. We show that MtmW and MtmOIV form a complex in the presence of PMB and NADPH, presumably to hand over the unstable MtmOIV product to MtmW, yielding iso-MTM, as a potential self-resistance mechanism against MTM toxicity.


Subject(s)
Biological Products/metabolism , Plicamycin/biosynthesis , Catalysis
11.
Fitoterapia ; 138: 104273, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31344395

ABSTRACT

Endophytic fungi have been considered a rich source for bioactive secondary metabolites with novel chemical structures. A high diverse group of endophytes, isolated from different medicinal plants, belongs to the genus Diaporthe. In a previously study performed by our group the crude extract of strain LGMF1583 showed considerable antibacterial activity mainly against Gram-negative bacteria. Based on ITS phylogeny analysis, strain LGMF1583 was identified as belonging to Diaporthe genus and may represent a new species. In the present study, we described the new species Diporthe vochysiae based on multilocus phylogeny analysis and morphological characteristics. The species name refers to the host, from which strain LGMF1583 was isolated, the medicinal plant Vochysia divergens. In view of the biotechnological potential of strain LGMF1583, we have also characterized the secondary metabolites produced by D. vochysiae. Chemical assessment of the D. vochysiae LGMF1583 revealed two new carboxamides, vochysiamides A (1) and B (2), in addition to the known metabolite, 2,5-dihydroxybenzyl alcohol (3). In the biological activity analysis, vochysiamide B (2) displayed considerable antibacterial activity against the Gram-negative bacterium Klebsiella pneumoniae (KPC), a producer of carbapenemases, MIC of 80 µg/mL. Carbapenemases are considered a major antimicrobial resistance threat, and infections caused by KPC have been considered a public health problem worldwide, and new compounds with activity against this bacterium are nowadays even more required.


Subject(s)
Amides/pharmacology , Anti-Bacterial Agents/pharmacology , Ascomycota/chemistry , Myrtales/microbiology , Plants, Medicinal/microbiology , Amides/isolation & purification , Anti-Bacterial Agents/isolation & purification , Ascomycota/classification , Brazil , Cell Line, Tumor , Endophytes/chemistry , Humans , Klebsiella pneumoniae/drug effects , Molecular Structure , Phylogeny
12.
Medchemcomm ; 10(5): 735-741, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31191864

ABSTRACT

An aureolic acid natural product mithramycin (MTM) has been known for its potent antineoplastic properties. MTM inhibits cell growth by binding in the minor groove of double-stranded DNA as a dimer, in which the two molecules of MTM are coordinated to each other through a divalent metal ion. A crystal structure of an MTM analogue, MTM SA-Phe, in the active metal ion-coordinated dimeric form demonstrates how the stereochemical features of MTM define the helicity of the dimeric scaffold for its binding to a right-handed DNA double helix. We also show crystallographically and biochemically that MTM, but not MTM SA-Phe, can be inactivated by boric acid through formation of a large macrocyclic species, in which two molecules of MTM are crosslinked to each other through 3-side chain-boron-sugar intermolecular bonds. We discuss these structural and biochemical properties in the context of MTM biosynthesis and the design of MTM analogues as anticancer therapeutics.

13.
Biomed Chromatogr ; 33(8): e4544, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30927450

ABSTRACT

Mithramycin (MTM) has potent anticancer activity, but severe toxicities restrict its clinical use. Semi-synthetic approaches have yielded novel MTM analogs with potentially lower toxicity and similar efficacy. In an effort to transition these analogs into in vivo models, a bioanalytical method was developed for their quantification in mouse plasma. Here we present the validation of the method for the quantitation of mithramycin SA-tryptophan (MTMSA-Trp) as well as the applicability of the methodology for assaying additional analogs, including MTM, mithramycin SK (MTMSK) and mithramycin SA-phenylalanine (MTMSA-Phe) with run times of 6 min. Assay linearity ranged from 5 to 100 ng/mL. Accuracies of calibration standards and quality control samples were within 15% of nominal with precision variability of <20%. MTMSA-Trp was stable for 30 days at -80°C and for at least three freeze-thaw cycles. Methanol (-80°C) extraction afforded 92% of MTMSA-Trp from plasma. Calibration curves for MTM and analogs were also linear from ≤5 to 100 ng/mL. This versatile method was used to quantitate MTM analogs in plasma samples collected during preclinical pharmacokinetic studies.


Subject(s)
Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Plicamycin/analogs & derivatives , Plicamycin/blood , Animals , Antibiotics, Antineoplastic , Drug Stability , Female , Limit of Detection , Linear Models , Mice , Plicamycin/chemistry , Plicamycin/pharmacokinetics , Reproducibility of Results
14.
J Antibiot (Tokyo) ; 72(5): 306-310, 2019 05.
Article in English | MEDLINE | ID: mdl-30792517

ABSTRACT

The isolation and structure elucidation of one new fungal metabolite, phenguignardic acid butyl ester (1a), and four previously reported metabolites (1b, 2a, 3-4) from the citrus phytopathogen Phyllosticta citricarpa LGMF06 are described. The new dioxolanone phenguignardic acid butyl ester (1a) had low phytotoxic activity in citrus leaves and fruits (at dose of 100 µg), and its importance as virulence factor in citrus black spot disease needs to be further addressed. Beside the phytotoxic analysis, we also evaluated the antibacterial (against methicillin sensitive and resistant Staphylococcus aureus) and cytotoxic (A549 non-small cell lung cancer, PC3 prostate cancer and HEL 299 normal epithelial lung) activities of the isolated compounds, which revealed that compounds 1a, 1b and 2a were responsible for the antibacterial activity of this strain.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Ascomycota/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Biological Products/chemistry , Biological Products/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Citrus/microbiology , Humans , Molecular Structure , Plant Diseases/microbiology
15.
Folia Microbiol (Praha) ; 64(3): 453-460, 2019 May.
Article in English | MEDLINE | ID: mdl-30565048

ABSTRACT

The citrus black spot (CBS), caused by Phyllosticta citricarpa, is one of the most important citrus diseases in subtropical regions of Africa, Asia, Oceania, and the Americas, and fruits with CBS lesions are still subject to quarantine regulations in the European Union. Despite the high application of fungicides, the disease remains present in the citrus crops of Central and South America. In order to find alternatives to help control CBS and reduce the use of fungicides, we explored the antifungal potential of endophytic actinomycetes isolated from the Brazilian medicinal plant Vochysia divergens found in the Pantanal biome. Two different culture media and temperatures were selected to identify the most efficient conditions for the production of active secondary metabolites. The metabolites produced by strain Microbacterium sp. LGMB471 cultured in SG medium at 36 °C considerably inhibited the development of P. citricarpa. Three isoflavones and five diketopiperazines were identified, and the compounds 7-O-ß-D-glucosyl-genistein and 7-O-ß-D-glucosyl-daidzein showed high activity against P. citricarpa, with the MIC of 33 µg/mL and inhibited the production of asexual spores of P. citricarpa on leaves and citrus fruits. Compounds that inhibit conidia formation may be a promising alternative to reduce the use of fungicides in the control of CBS lesions, especially in regions where sexual reproduction does not occur, as in the USA. Our data suggest the use of Microbacterium sp. LGMB471 or its metabolites as an ecological alternative to be used in association with the fungicides for the control of CBS disease.


Subject(s)
Actinomycetales/chemistry , Ascomycota/drug effects , Fungicides, Industrial/pharmacology , Asia , Brazil , Citrus/microbiology , Culture Media , Diketopiperazines/isolation & purification , Diketopiperazines/pharmacology , Fungicides, Industrial/isolation & purification , Isoflavones/isolation & purification , Isoflavones/pharmacology , Microbial Sensitivity Tests , Plant Diseases/microbiology , Plant Leaves/microbiology , Secondary Metabolism , Spores, Fungal/drug effects , United States
16.
J Med Chem ; 61(17): 8001-8016, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30114371

ABSTRACT

Mithramycin A (1) was identified as the top potential inhibitor of the aberrant ETS transcription factor EWS-FLI1, which causes Ewing sarcoma. Unfortunately, 1 has a narrow therapeutic window, compelling us to seek less toxic and more selective analogues. Here, we used MTMSA (2) to generate analogues via peptide coupling and fragment-based drug development strategies. Cytotoxicity assays in ETS and non-ETS dependent cell lines identified two dipeptide analogues, 60 and 61, with 19.1- and 15.6-fold selectivity, respectively, compared to 1.5-fold for 1. Importantly, the cytotoxicity of 60 and 61 is <100 nM in ETS cells. Molecular assays demonstrated the inhibitory capacity of these analogues against EWS-FLI1 mediated transcription in Ewing sarcoma. Structural analysis shows that positioning the tryptophan residue in a distal position improves selectivity, presumably via interaction with the ETS transcription factor. Thus, these analogues may present new ways to target transcription factors for clinical use.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Drug Development , Oncogene Proteins, Fusion/antagonists & inhibitors , Plicamycin/analogs & derivatives , Proto-Oncogene Protein c-fli-1/antagonists & inhibitors , Proto-Oncogene Proteins c-ets/antagonists & inhibitors , RNA-Binding Protein EWS/antagonists & inhibitors , Sarcoma, Ewing/drug therapy , Antibiotics, Antineoplastic/chemistry , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Humans , Male , Molecular Structure , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology , Tumor Cells, Cultured
17.
Article in English | MEDLINE | ID: mdl-29735559

ABSTRACT

Muraymycins are antibacterial natural products from Streptomyces spp. that inhibit translocase I (MraY), which is involved in cell wall biosynthesis. Structurally, muraymycins consist of a 5'-C-glycyluridine (GlyU) appended to a 5″-amino-5″-deoxyribose (ADR), forming a disaccharide core that is found in several peptidyl nucleoside inhibitors of MraY. For muraymycins, the GlyU-ADR disaccharide is further modified with an aminopropyl-linked peptide to generate the simplest structures, annotated as the muraymycin D series. Two enzymes encoded in the muraymycin biosynthetic gene cluster, Mur29 and Mur28, were functionally assigned in vitro as a Mg·ATP-dependent nucleotidyltransferase and a Mg·ATP-dependent phosphotransferase, respectively, both modifying the 3″-OH of the disaccharide. Biochemical characterization revealed that both enzymes can utilize several nucleotide donors as cosubstrates and the acceptor substrate muraymycin also behaves as an inhibitor. Single-substrate kinetic analyses revealed that Mur28 preferentially phosphorylates a synthetic GlyU-ADR disaccharide, a hypothetical biosynthetic precursor of muraymycins, while Mur29 preferentially adenylates the D series of muraymycins. The adenylated or phosphorylated products have significantly reduced (170-fold and 51-fold, respectively) MraY inhibitory activities and reduced antibacterial activities, compared with the respective unmodified muraymycins. The results are consistent with Mur29-catalyzed adenylation and Mur28-catalyzed phosphorylation serving as complementary self-resistance mechanisms, with a distinct temporal order during muraymycin biosynthesis.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Nucleosides/biosynthesis , Nucleosides/chemistry , Nucleotidyltransferases/chemistry , Peptides/chemistry , Phosphotransferases/chemistry , Streptomyces/metabolism , Transferases/antagonists & inhibitors , Anti-Bacterial Agents/biosynthesis , Nucleotides/biosynthesis , Nucleotidyltransferases/genetics , Phosphorylation , Phosphotransferases/genetics , Transferases (Other Substituted Phosphate Groups)
18.
Folia Microbiol (Praha) ; 63(4): 499-505, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29497981

ABSTRACT

Antibiotic-resistant bacteria have been observed with increasing frequency over the past decades, driving the search for new drugs and stimulating the interest in natural products sources. Endophytic fungi from medicinal plants represent a great source of novel bioactive compounds useful to pharmaceutical and agronomical purposes. Diaporthe terebinthifolii is an endophytic species isolated from Schinus terebinthifolius, a plant used in popular medicine for several health problems. The strain D. terebinthifolii LGMF907 was previously reported by our group to produce secondary metabolites with biological activity against phytopathogens. Based on these data, strain LGMF907 was chosen for bioprospecting against microorganisms of clinical importance and for characterization of major secondary metabolites. In this study, different culture conditions were evaluated and the biological activity of this strain was expanded. The crude extracts demonstrated high antibacterial activity against Escherichia coli, Micrococcus luteus, Saccharomyces cerevisiae, methicillin-sensitive Staphylococcus aureus, and methicillin-resistant S. aureus. The compounds diaporthin and orthosporin were characterized and also showed activity against the clinical microorganisms evaluated. This study discloses the first isolation of diaporthin and orthosporin from D. terebinthifolii, and revealed the potential of this endophytic fungus to produce secondary metabolites with antimicrobial activity.


Subject(s)
Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Bioprospecting , Saccharomyces cerevisiae/drug effects , Saccharomycetales/metabolism , Anti-Infective Agents/chemistry , Culture Media , Endophytes/chemistry , Endophytes/metabolism , Escherichia coli/drug effects , Fermentation , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium/drug effects , Saccharomycetales/chemistry , Staphylococcus aureus/drug effects
19.
Sci Rep ; 8(1): 3122, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29449610

ABSTRACT

Microorganisms associated with plants are highly diverse and can produce a large number of secondary metabolites, with antimicrobial, anti-parasitic and cytotoxic activities. We are particularly interested in exploring endophytes from medicinal plants found in the Pantanal, a unique and widely unexplored wetland in Brazil. In a bio-prospecting study, strains LGMF1213 and LGMF1215 were isolated as endophytes from Vochysia divergens, and by morphological and molecular phylogenetic analyses were characterized as Phaeophleospora vochysiae sp. nov. The chemical assessment of this species reveals three major compounds with high biological activity, cercoscosporin (1), isocercosporin (2) and the new compound 3-(sec-butyl)-6-ethyl-4,5-dihydroxy-2-methoxy-6-methylcyclohex-2-enone (3). Besides the isolation of P. vochysiae as endophyte, the production of cercosporin compounds suggest that under specific conditions this species causes leaf spots, and may turn into a pathogen, since leaf spots are commonly caused by species of Cercospora that produce related compounds. In addition, the new compound 3-(sec-butyl)-6-ethyl-4,5-dihydroxy-2-methoxy-6-methylcyclohex-2-enone showed considerable antimicrobial activity and low cytotoxicity, which needs further exploration.


Subject(s)
Bacteria/isolation & purification , Myrtales/metabolism , Myrtales/microbiology , Anti-Bacterial Agents/metabolism , Anti-Infective Agents/metabolism , Ascomycota/metabolism , Bacteria/metabolism , Brazil , Endophytes/metabolism , Magnoliopsida/metabolism , Magnoliopsida/microbiology , Microbial Sensitivity Tests , Perylene/analogs & derivatives , Phylogeny , Plants, Medicinal/metabolism
20.
Front Microbiol ; 8: 1642, 2017.
Article in English | MEDLINE | ID: mdl-28932210

ABSTRACT

Endophytic actinomycetes from medicinal plants produce a wide diversity of secondary metabolites (SM). However, to date, the knowledge about endophytes from Brazil remains scarce. Thus, we analyzed the antimicrobial potential of 10 actinomycetes isolated from the medicinal plant Vochysia divergens located in the Pantanal sul-mato-grossense, an unexplored wetland in Brazil. Strains were classified as belonging to the Aeromicrobium, Actinomadura, Microbacterium, Microbispora, Micrococcus, Sphaerisporangium, Streptomyces, and Williamsia genera, through morphological and 16S rRNA phylogenetic analyzes. A susceptibility analysis demonstrated that the strains were largely resistant to the antibiotics oxacillin and nalidixic acid. Additionally, different culture media (SG and R5A), and temperatures (28 and 36°C) were evaluated to select the best culture conditions to produce the active SM. All conditions were analyzed for active metabolites, and the best antibacterial activity was observed from metabolites produced with SG medium at 36°C. The LGMB491 (close related to Aeromicrobium ponti) extract showed the highest activity against methicillin-resistant Staphylococcus aureus (MRSA), with a MIC of 0.04 mg/mL, and it was selected for SM identification. Strain LGMB491 produced 1-acetyl-ß-carboline (1), indole-3-carbaldehyde (2), 3-(hydroxyacetyl)-indole (4), brevianamide F (5), and cyclo-(L-Pro-L-Phe) (6) as major compounds with antibacterial activity. In this study, we add to the knowledge about the endophytic community from the medicinal plant V. divergens and report the isolation of rare actinomycetes that produce highly active metabolites.

SELECTION OF CITATIONS
SEARCH DETAIL
...