Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Res Sq ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38746315

ABSTRACT

Bipolar disorder (BD) is characterized by disrupted circadian rhythms and neuronal loss. Lithium is neuroprotective and used to treat BD, but outcomes are variable. Past research identified that circadian rhythms in BD patient neurons are associated with lithium response (Li-R) or non-response (Li-NR). However, the underlying cellular mechanisms remain unknown. To study interactions among circadian clock genes and cell survival, and their role in BD and predicting lithium response, we tested selected genes (PER1, BMAL1 and REV-ERBα) and small molecule modulators of ROR/REV-ERB nuclear receptors in models of cell survival using mouse neurons and stem-cell derived neuronal progenitor cells (NPC) from BD patients and controls. In apoptosis assays using staurosporine (STS), lithium was neuroprotective. Knockdown of PER1, BMAL1 and REV-ERBα modified cell survival across models. In NPCs, reduced expression of PER1 and BMAL1 led to more extensive cell death in Li-NR vs. Li-R. Reduced REV-ERBα expression caused more extensive cell death in BD vs. control NPCs, without distinguishing Li-R and Li-NR. In IMHN, The REV-ERB agonist GSK4112 had strong effects on circadian rhythm amplitude, and was neuroprotective in mouse neurons and control NPCs, but not in BD NPCs. Expression of cell survival genes following STS and GSK4112 treatments revealed BD-associated, and Li-R associated differences in expression profiles. We conclude that the neuroprotective response to lithium is similar in NPCs from Li-R and Li-NR. However, knockdown of circadian clock genes or stimulation of REV-ERBs reveal distinct contributions to cell death in BD patient NPCs, some of which distinguish Li-R and Li-NR.

2.
Front Neurosci ; 17: 1177458, 2023.
Article in English | MEDLINE | ID: mdl-37274219

ABSTRACT

Introduction: Neuropeptide signaling modulates the function of central clock neurons in the suprachiasmatic nucleus (SCN) during development and adulthood. Arginine vasopressin (AVP) and vasoactive intestinal peptide (VIP) are expressed early in SCN development, but the precise timing of transcriptional onset has been difficult to establish due to age-related changes in the rhythmic expression of each peptide. Methods: To provide insight into spatial patterning of peptide transcription during SCN development, we used a transgenic approach to define the onset of Avp and Vip transcription. Avp-Cre or Vip-Cre males were crossed to Ai9+/+ females, producing offspring in which the fluorescent protein tdTomato (tdT) is expressed at the onset of Avp or Vip transcription. Spatial patterning of Avp-tdT and Vip-tdT expression was examined at critical developmental time points spanning mid-embryonic age to adulthood in both sexes. Results: We find that Avp-tdT and Vip-tdT expression is initiated at different developmental time points in spatial subclusters of SCN neurons, with developmental patterning that differs by sex. Conclusions: These data suggest that SCN neurons can be distinguished into further subtypes based on the developmental patterning of neuropeptide expression, which may contribute to regional and/or sex differences in cellular function in adulthood.

3.
Eur Neuropsychopharmacol ; 74: 1-14, 2023 09.
Article in English | MEDLINE | ID: mdl-37126998

ABSTRACT

Bipolar disorder (BD) is characterized by mood episodes, disrupted circadian rhythms and gray matter reduction in the brain. Lithium is an effective pharmacotherapy for BD, but not all patients respond to treatment. Lithium has neuroprotective properties and beneficial effects on circadian rhythms that may distinguish lithium responders (Li-R) from non-responders (Li-NR). The circadian clock regulates molecular pathways involved in apoptosis and cell survival, but how this overlap impacts BD and/or lithium responsiveness is unknown. In primary fibroblasts from Li-R/Li-NR BD patients and controls, we found patterns of co-expression among circadian clock and cell survival genes that distinguished BD vs. control, and Li-R vs. Li-NR cells. In cellular models of apoptosis using staurosporine (STS), lithium preferentially protected fibroblasts against apoptosis in BD vs. control samples, regardless of Li-R/Li-NR status. When examining the effects of lithium treatment of cells in vitro, caspase activation by lithium correlated with period alteration, but the relationship differed in control, Li-R and Li-NR samples. Knockdown of Per1 and Per3 in mouse fibroblasts altered caspase activity, cell death and circadian rhythms in an opposite manner. In BD cells, genetic variation in PER1 and PER3 predicted sensitivity to apoptosis in a manner consistent with knockdown studies. We conclude that distinct patterns of coordination between circadian clock and cell survival genes in BD may help predict lithium response.


Subject(s)
Bipolar Disorder , Circadian Clocks , Mice , Animals , Lithium/pharmacology , Lithium/therapeutic use , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Bipolar Disorder/metabolism , Circadian Clocks/genetics , Cell Survival , Circadian Rhythm , Fibroblasts , Caspases/pharmacology , Caspases/therapeutic use
4.
Proc Natl Acad Sci U S A ; 120(18): e2216820120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37098068

ABSTRACT

Daily and annual changes in light are processed by central clock circuits that control the timing of behavior and physiology. The suprachiasmatic nucleus (SCN) in the anterior hypothalamus processes daily photic inputs and encodes changes in day length (i.e., photoperiod), but the SCN circuits that regulate circadian and photoperiodic responses to light remain unclear. Somatostatin (SST) expression in the hypothalamus is modulated by photoperiod, but the role of SST in SCN responses to light has not been examined. Our results indicate that SST signaling regulates daily rhythms in behavior and SCN function in a manner influenced by sex. First, we use cell-fate mapping to provide evidence that SST in the SCN is regulated by light via de novo Sst activation. Next, we demonstrate that Sst  -/- mice display enhanced circadian responses to light, with increased behavioral plasticity to photoperiod, jetlag, and constant light conditions. Notably, lack of Sst  -/- eliminated sex differences in photic responses due to increased plasticity in males, suggesting that SST interacts with clock circuits that process light differently in each sex. Sst  -/- mice also displayed an increase in the number of retinorecipient neurons in the SCN core, which express a type of SST receptor capable of resetting the molecular clock. Last, we show that lack of SST signaling modulates central clock function by influencing SCN photoperiodic encoding, network after-effects, and intercellular synchrony in a sex-specific manner. Collectively, these results provide insight into peptide signaling mechanisms that regulate central clock function and its response to light.


Subject(s)
Circadian Clocks , Light , Mice , Female , Male , Animals , Circadian Rhythm/physiology , Suprachiasmatic Nucleus/metabolism , Somatostatin/genetics , Somatostatin/metabolism , Photoperiod , Circadian Clocks/genetics
5.
Neurosci Lett ; 786: 136772, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35798199

ABSTRACT

Bipolar disorder (BD) is characterized by disrupted circadian rhythms affecting sleep, arousal, and mood. Lithium is among the most effective mood stabilizer treatments for BD, and in addition to improving mood symptoms, stabilizes sleep and activity rhythms in treatment responsive patients. Across a variety of experimental models, lithium has effects on circadian rhythms. However, uncertainty exists as to whether these actions directly pertain to lithium's therapeutic effects. Here, we consider evidence from mechanistic studies in animals and cells and clinical trials in BD patients that identify associations between circadian rhythms and the therapeutic effects of lithium. Most evidence indicates that lithium has effects on cellular circadian rhythms and increases morningness behaviors in BD patients, changes that may contribute to the therapeutic effects of lithium. However, much of this evidence is limited by cross-sectional analyses and/or imprecise proxy markers of clinical outcomes and circadian rhythms in BD patients, while mechanistic studies rely on inference from animals or small numbers of patients . Further study may clarify the essential mechanisms underlying lithium responsive BD, better characterize the longitudinal changes in circadian rhythms in BD patients, and inform the development of therapeutic interventions targeting circadian rhythms.


Subject(s)
Bipolar Disorder , Lithium , Animals , Bipolar Disorder/drug therapy , Circadian Rhythm , Cross-Sectional Studies , Lithium/pharmacology , Lithium/therapeutic use , Sleep
6.
Glia ; 70(9): 1777-1794, 2022 09.
Article in English | MEDLINE | ID: mdl-35589612

ABSTRACT

Norepinephrine exerts powerful influences on the metabolic, neuroprotective and immunoregulatory functions of astrocytes. Until recently, all effects of norepinephrine were believed to be mediated by receptors localized exclusively to the plasma membrane. However, recent studies in cardiomyocytes have identified adrenergic receptors localized to intracellular membranes, including Golgi and inner nuclear membranes, and have shown that norepinephrine can access these receptors via transporter-mediated uptake. We recently identified a high-capacity norepinephrine transporter, organic cation transporter 3 (OCT3), densely localized to outer nuclear membranes in astrocytes, suggesting that adrenergic signaling may also occur at the inner nuclear membrane in these cells. Here, we used immunofluorescence and western blot to show that ß1 -adrenergic receptors are localized to astrocyte inner nuclear membranes; that key adrenergic signaling partners are present in astrocyte nuclei; and that OCT3 and other catecholamine transporters are localized to astrocyte plasma and nuclear membranes. To test the functionality of nuclear membrane ß1 -adrenergic receptors, we monitored real-time protein kinase A (PKA) activity in astrocyte nuclei using a fluorescent biosensor. Treatment of astrocytes with norepinephrine induced rapid increases in PKA activity in the nuclear compartment. Pretreatment of astrocytes with inhibitors of catecholamine uptake blocked rapid norepinephrine-induced increases in nuclear PKA activity. These studies, the first to document functional adrenergic receptors at the nuclear membrane in any central nervous system cell, reveal a novel mechanism by which norepinephrine may directly influence nuclear processes. This mechanism may contribute to previously described neuroprotective, metabolic and immunoregulatory actions of norepinephrine.


Subject(s)
Astrocytes , Norepinephrine , Adrenergic Agents/pharmacology , Astrocytes/metabolism , Catecholamines/metabolism , Catecholamines/pharmacology , Norepinephrine/metabolism , Norepinephrine/pharmacology , Nuclear Envelope/metabolism , Receptors, Adrenergic/metabolism , Receptors, Adrenergic, beta/metabolism , Receptors, Adrenergic, beta-1/metabolism
7.
Neuroendocrinology ; 112(9): 904-916, 2022.
Article in English | MEDLINE | ID: mdl-34856551

ABSTRACT

BACKGROUND/AIMS: Circadian rhythms in behavior and physiology are programmed by the suprachiasmatic nucleus (SCN) of the hypothalamus. A subset of SCN neurons produce the neuropeptide arginine vasopressin (AVP), but it remains unclear whether AVP signaling influences the SCN clock directly. METHODS: Here, we test that AVP signaling acting through V1A and V1B receptors influences molecular rhythms in SCN neurons. V1 receptor agonists were applied ex vivo to PERIOD2::LUCIFERASE SCN slices, allowing for real-time monitoring of changes in molecular clock function. RESULTS: V1A/B agonists reset the phase of the SCN molecular clock in a time-dependent manner, with larger magnitude responses by the female SCN. Further, we found evidence that both Gαq and Gαs signaling pathways interact with V1A/B-induced SCN resetting, and that this response requires vasoactive intestinal polypeptide (VIP) signaling. CONCLUSIONS: Collectively, this work indicates that AVP signaling resets SCN molecular rhythms in conjunction with VIP signaling and in a manner influenced by sex. This highlights the utility of studying clock function in both sexes and suggests that signal integration in central clock circuits regulates emergent properties important for the control of daily rhythms in behavior and physiology.


Subject(s)
Circadian Clocks , Vasoactive Intestinal Peptide , Arginine Vasopressin/metabolism , Circadian Rhythm/physiology , Female , Humans , Male , Suprachiasmatic Nucleus/metabolism , Vasoactive Intestinal Peptide/metabolism , Vasopressins/metabolism
8.
Horm Behav ; 127: 104888, 2021 01.
Article in English | MEDLINE | ID: mdl-33202247

ABSTRACT

Arginine vasopressin (AVP) is a neurohormone that alters cellular physiology through both endocrine and synaptic signaling. Circadian rhythms in AVP release and other biological processes are driven by the suprachiasmatic nucleus (SCN) of the anterior hypothalamus. Loss of vasopressin signaling alters circadian behavior, but the basis of these effects remains unclear. Here we investigate the role of AVP signaling in circadian timekeeping by analyzing behavior and SCN function in a novel AVP-deficient mouse model. Consistent with previous work, loss of AVP signaling increases water consumption and accelerates recovery to simulated jetlag. We expand on these results to show that loss of AVP increases period, imprecision and plasticity of behavioral rhythms under constant darkness. Interestingly, the effect of AVP deficiency on circadian period was influenced by sex, with loss of AVP lengthening period in females but not males. Examining SCN function directly with ex vivo bioluminescence imaging of clock protein expression, we demonstrate that loss of AVP signaling modulates the period, precision, and phase relationships of SCN neurons in both sexes. This pattern of results suggests that there are likely sex differences in downstream targets of the SCN. Collectively, this work indicates that AVP signaling modulates circadian circuits in a manner influenced by sex, which provides new insight into sexual dimorphisms in the regulation of daily rhythms.


Subject(s)
Arginine Vasopressin/physiology , Circadian Clocks/genetics , Circadian Rhythm/genetics , Nerve Net/metabolism , Animals , Arginine Vasopressin/genetics , Arginine Vasopressin/metabolism , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Net/physiology , Sex Characteristics , Signal Transduction/genetics , Suprachiasmatic Nucleus/metabolism
9.
Eur J Neurosci ; 52(11): 4546-4562, 2020 12.
Article in English | MEDLINE | ID: mdl-32725894

ABSTRACT

Regional alterations in kinetics of catecholamine uptake are due in part to variations in clearance mechanisms. The rate of clearance is a critical determinant of the strength of catecholamine signaling. Catecholamine transmission in the nucleus accumbens core (NAcc) and basolateral amygdala (BLA) is of particular interest due to involvement of these regions in cognition and motivation. Previous work has shown that catecholamine clearance in the NAcc is largely mediated by the dopamine transporter (DAT), but clearance in the BLA is less DAT-dependent. A growing body of literature suggests that organic cation transporter 3 (OCT3) also contributes to catecholamine clearance in both regions. Consistent with different clearance mechanisms between regions, catecholamine clearance is more rapid in the NAcc than in the BLA, though mechanisms underlying this have not been resolved. We compared the expression of DAT and OCT3 and their contributions to catecholamine clearance in the NAcc and BLA. We found DAT protein levels were ~ 4-fold higher in the NAcc than in the BLA, while OCT3 protein expression was similar between the two regions. Immunofluorescent labeling of the two transporters in brain sections confirmed these findings. Ex vivo voltammetry demonstrated that the magnitude of catecholamine release was greater, and the clearance rate was faster in the NAcc than in the BLA. Additionally, catecholamine clearance in the BLA was more sensitive to the OCT3 inhibitor corticosterone, while clearance in the NAcc was more cocaine sensitive. These distinctions in catecholamine clearance may underlie differential effects of catecholamines on behavioral outputs mediated by these regions.


Subject(s)
Basolateral Nuclear Complex , Nucleus Accumbens , Basolateral Nuclear Complex/metabolism , Catecholamines , Cations , Dopamine Plasma Membrane Transport Proteins/metabolism , Nucleus Accumbens/metabolism
10.
J Biol Rhythms ; 35(4): 340-352, 2020 08.
Article in English | MEDLINE | ID: mdl-32460660

ABSTRACT

Circadian rhythms are programmed by the suprachiasmatic nucleus (SCN), which relies on neuropeptide signaling to maintain daily timekeeping. Vasoactive intestinal polypeptide (VIP) is critical for SCN function, but the precise role of VIP neurons in SCN circuits is not fully established. To interrogate their contribution to SCN circuits, VIP neurons can be manipulated specifically using the DNA-editing enzyme Cre recombinase. Although the Cre transgene is assumed to be inert by itself, we find that VIP expression is reduced in both heterozygous and homozygous adult VIP-IRES-Cre mice (JAX 010908). Compared with wild-type mice, homozygous VIP-Cre mice display faster reentrainment and shorter free-running period but do not become arrhythmic in constant darkness. Consistent with this phenotype, homozygous VIP-Cre mice display intact SCN PER2::LUC rhythms, albeit with altered period and network organization. We present evidence that the ability to sustain molecular rhythms in the VIP-Cre SCN is not due to residual VIP signaling; rather, arginine vasopressin signaling helps to sustain SCN function at both intracellular and intercellular levels in this model. This work establishes that the VIP-IRES-Cre transgene interferes with VIP expression but that loss of VIP can be mitigated by other neuropeptide signals to help sustain SCN function. Our findings have implications for studies employing this transgenic model and provide novel insight into neuropeptide signals that sustain daily timekeeping in the master clock.


Subject(s)
Circadian Clocks , Suprachiasmatic Nucleus/physiology , Vasoactive Intestinal Peptide/genetics , Vasoactive Intestinal Peptide/metabolism , Animals , Circadian Rhythm , Female , Integrases/genetics , Integrases/metabolism , Male , Mice , Neurons/physiology , Neuropeptides/metabolism , Period Circadian Proteins/genetics , Signal Transduction
11.
Eur J Neurosci ; 51(1): 82-108, 2020 01.
Article in English | MEDLINE | ID: mdl-30402923

ABSTRACT

Daily rhythms are generated by the circadian timekeeping system, which is orchestrated by the master circadian clock in the suprachiasmatic nucleus (SCN) of mammals. Circadian timekeeping is endogenous and does not require exposure to external cues during development. Nevertheless, the circadian system is not fully formed at birth in many mammalian species and it is important to understand how SCN development can affect the function of the circadian system in adulthood. The purpose of the current review is to discuss the ontogeny of cellular and circuit function in the SCN, with a focus on work performed in model rodent species (i.e., mouse, rat, and hamster). Particular emphasis is placed on the spatial and temporal patterns of SCN development that may contribute to the function of the master clock during adulthood. Additional work aimed at decoding the mechanisms that guide circadian development is expected to provide a solid foundation upon which to better understand the sources and factors contributing to aberrant maturation of clock function.


Subject(s)
Circadian Clocks , Circadian Rhythm , Animals , Mammals , Mice , Rats , Suprachiasmatic Nucleus
12.
Elife ; 82019 11 20.
Article in English | MEDLINE | ID: mdl-31746738

ABSTRACT

Annual changes in the environment threaten survival, and numerous biological processes in mammals adjust to this challenge via seasonal encoding by the suprachiasmatic nucleus (SCN). To tune behavior according to day length, SCN neurons display unified rhythms with synchronous phasing when days are short, but will divide into two sub-clusters when days are long. The transition between SCN states is critical for maintaining behavioral responses to seasonal change, but the mechanisms regulating this form of neuroplasticity remain unclear. Here we identify that a switch in chloride transport and GABAA signaling is critical for maintaining state plasticity in the SCN network. Further, we reveal that blocking excitatory GABAA signaling locks the SCN into its long day state. Collectively, these data demonstrate that plasticity in GABAA signaling dictates how clock neurons interact to maintain environmental encoding. Further, this work highlights factors that may influence susceptibility to seasonal disorders in humans.


Subject(s)
Circadian Clocks , Signal Transduction , Suprachiasmatic Nucleus/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Biological Transport , Chlorides/metabolism , Mice , Neuronal Plasticity , Photoperiod , Seasons
13.
J Comp Neurol ; 526(13): 2048-2067, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29931690

ABSTRACT

The suprachiasmatic nucleus (SCN) is the neural network that drives daily rhythms in behavior and physiology. The SCN encodes environmental changes through the phasing of cellular rhythms across its anteroposterior axis, but it remains unknown what signaling mechanisms regulate clock function along this axis. Here we demonstrate that arginine vasopressin (AVP) signaling organizes the SCN into distinct anteroposterior domains. Spatial mapping of SCN gene expression using in situ hybridization delineated anterior and posterior domains for AVP signaling components, including complementary patterns of V1a and V1b expression that suggest different roles for these two AVP receptors. Similarly, anteroposterior patterning of transcripts involved in Vasoactive Intestinal Polypeptide- and Prokineticin2 signaling was evident across the SCN. Using bioluminescence imaging, we then revealed that inhibiting V1A and V1B signaling alters period and phase differentially along the anteroposterior SCN. V1 antagonism lengthened period the most in the anterior SCN, whereas changes in phase were largest in the posterior SCN. Further, separately antagonizing V1A and V1B signaling modulated SCN function in a manner that mapped onto anteroposterior expression patterns. Lastly, V1 antagonism influenced SCN period and phase along the dorsoventral axis, complementing effects on the anteroposterior axis. Together, these results indicate that AVP signaling modulates SCN period and phase in a spatially specific manner, which is expected to influence how the master clock interacts with downstream tissues and responds to environmental changes. More generally, we reveal anteroposterior asymmetry in neuropeptide signaling as a recurrent organizational motif that likely influences neural computations in the SCN clock network.


Subject(s)
Arginine Vasopressin/physiology , Circadian Clocks/physiology , Signal Transduction/physiology , Animals , Antidiuretic Hormone Receptor Antagonists/pharmacology , Brain Mapping , Dose-Response Relationship, Drug , Gastrointestinal Hormones/genetics , Gastrointestinal Hormones/physiology , Immunohistochemistry , Mice , Mice, Inbred C57BL , Neurons/physiology , Neuropeptides/genetics , Neuropeptides/physiology , Receptors, Vasopressin/drug effects , Suprachiasmatic Nucleus/cytology , Suprachiasmatic Nucleus/physiology
14.
Sci Rep ; 7(1): 3925, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28634329

ABSTRACT

Light improves cognitive function in humans; however, the neurobiological mechanisms underlying positive effects of light remain unclear. One obstacle is that most rodent models have employed lighting conditions that cause cognitive deficits rather than improvements. Here we have developed a mouse model where light improves cognitive function, which provides insight into mechanisms underlying positive effects of light. To increase light exposure without eliminating daily rhythms, we exposed mice to either a standard photoperiod or a long day photoperiod. Long days enhanced long-term recognition memory, and this effect was abolished by loss of the photopigment melanopsin. Further, long days markedly altered hippocampal clock function and elevated transcription of Insulin-like Growth Factor2 (Igf2). Up-regulation of Igf2 occurred in tandem with suppression of its transcriptional repressor Wilm's tumor1. Consistent with molecular de-repression of Igf2, IGF2 expression was increased in the hippocampus before and after memory training. Lastly, long days occluded IGF2-induced improvements in recognition memory. Collectively, these results suggest that light changes hippocampal clock function to alter memory, highlighting novel mechanisms that may contribute to the positive effects of light. Furthermore, this study provides insight into how the circadian clock can regulate hippocampus-dependent learning by controlling molecular processes required for memory consolidation.


Subject(s)
Hippocampus/metabolism , Insulin-Like Growth Factor II/genetics , Recognition, Psychology/physiology , Rod Opsins/metabolism , Up-Regulation , Animals , Circadian Clocks , Insulin-Like Growth Factor II/metabolism , Male , Memory Consolidation/physiology , Mice , Models, Animal , Photoperiod , Time Factors , Wnt1 Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...