Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Nat Commun ; 14(1): 5249, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37640732

ABSTRACT

Low affinity is common for germline B cell receptors (BCR) seeding development of broadly neutralizing antibodies (bnAbs) that engage hypervariable viruses, including HIV. Antibody affinity selection is also non-homogenizing, insuring the survival of low affinity B cell clones. To explore whether this provides a natural window for expanding human B cell lineages against conserved vaccine targets, we deploy transgenic mice mimicking human antibody diversity and somatic hypermutation (SHM) and immunize with simple monomeric HIV glycoprotein envelope immunogens. We report an immunization regimen that focuses B cell memory upon the conserved CD4 binding site (CD4bs) through both conventional affinity maturation and reproducible expansion of low affinity BCR clones with public patterns in SHM. In the latter instance, SHM facilitates target acquisition by decreasing binding strength. This suggests that permissive B cell selection enables the discovery of antibody epitopes, in this case an HIV bnAb site.


Subject(s)
AIDS Vaccines , HIV Infections , Humans , Animals , Mice , B-Lymphocytes , Memory B Cells , Receptors, Antigen, B-Cell/genetics , Broadly Neutralizing Antibodies , HIV Antigens , Mice, Transgenic , HIV Infections/prevention & control
2.
Cell Rep ; 41(6): 111628, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36351401

ABSTRACT

Pathogens evade host humoral responses by accumulating mutations in surface antigens. While variable, there are conserved regions that cannot mutate without compromising fitness. Antibodies targeting these conserved epitopes are often broadly protective but remain minor components of the repertoire. Rational immunogen design leverages a structural understanding of viral antigens to modulate humoral responses to favor these responses. Here, we report an epitope-enriched immunogen presenting a higher copy number of the influenza hemagglutinin (HA) receptor-binding site (RBS) epitope relative to other B cell epitopes. Immunization in a partially humanized murine model imprinted with an H1 influenza shows H1-specific serum and >99% H1-specific B cells being RBS-directed. Single B cell analyses show a genetically restricted response that structural analysis defines as RBS-directed antibodies engaging the RBS with germline-encoded contacts. These data show how epitope enrichment expands B cell responses toward conserved epitopes and advances immunogen design approaches for next-generation viral vaccines.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Mice , Animals , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Antibodies, Viral , Epitopes, B-Lymphocyte
3.
Immunity ; 55(9): 1693-1709.e8, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35952670

ABSTRACT

Human broadly neutralizing antibodies (bnAbs) targeting the hemagglutinin stalk of group 1 influenza A viruses (IAVs) are biased for IGHV1-69 alleles that use phenylalanine (F54) but not leucine (L54) within their CDRH2 loops. Despite this, we demonstrated that both alleles encode for human IAV bnAbs that employ structurally convergent modes of contact to the same epitope. To resolve differences in lineage expandability, we compared F54 versus L54 as substrate within humanized mice, where antibodies develop with human-like CDRH3 diversity but are restricted to single VH genes. While both alleles encoded for bnAb precursors, only F54 IGHV1-69 supported elicitation of heterosubtypic serum bnAbs following immunization with a stalk-only nanoparticle vaccine. L54 IGHV1-69 was unproductive, co-encoding for anergic B cells and autoreactive stalk antibodies that were cleared from B cell memory. Moreover, human stalk antibodies also demonstrated L54-dependent autoreactivity. Therefore, IGHV1-69 polymorphism, which is skewed ethnically, gates tolerance and vaccine expandability of influenza bnAbs.


Subject(s)
Influenza A virus , Influenza Vaccines , Influenza, Human , Alleles , Animals , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza, Human/prevention & control , Mice
4.
Front Immunol ; 12: 730471, 2021.
Article in English | MEDLINE | ID: mdl-34566992

ABSTRACT

The ligand-binding surface of the B cell receptor (BCR) is formed by encoded and non-encoded antigen complementarity determining regions (CDRs). Genetically reproducible or 'public' antibodies can arise when the encoded CDRs play deterministic roles in antigen recognition, notably within human broadly neutralizing antibodies against HIV and influenza virus. We sought to exploit this by engineering virus-like-particle (VLP) vaccines that harbor multivalent affinity against gene-encoded moieties of the BCR antigen binding site. As proof of concept, we deployed a library of RNA bacteriophage VLPs displaying random peptides to identify a multivalent antigen that selectively triggered germline BCRs using the human VH gene IGVH1-2*02. This VLP selectively primed IGHV1-2*02 BCRs that were present within a highly diversified germline antibody repertoire within humanized mice. Our approach thus provides methodology to generate antigens that engage specific BCR configurations of interest, in the absence of structure-based information.


Subject(s)
B-Lymphocytes/immunology , Protein Engineering , RNA Phages/immunology , Receptors, Antigen, B-Cell/immunology , Single-Domain Antibodies/immunology , Vaccines, Virus-Like Particle/immunology , Adoptive Transfer , Animals , Antibody Specificity , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , B-Lymphocytes/transplantation , Female , Gene Library , Humans , Ligands , Male , Mice, Transgenic , Proof of Concept Study , RNA Phages/genetics , RNA Phages/metabolism , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Single-Domain Antibodies/administration & dosage , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Vaccination , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/metabolism
5.
J Histochem Cytochem ; 69(5): 297-320, 2021 05.
Article in English | MEDLINE | ID: mdl-33641490

ABSTRACT

Analysis of formalin-fixed paraffin-embedded (FFPE) tissue by immunohistochemistry (IHC) is commonplace in clinical and research laboratories. However, reports suggest that IHC results can be compromised by biospecimen preanalytical factors. The National Cancer Institute's Biospecimen Preanalytical Variables Program conducted a systematic study to examine the potential effects of delay to fixation (DTF) and time in fixative (TIF) on IHC using 24 cancer biomarkers. Differences in IHC staining, relative to controls with a DTF of 1 hr, were observed in FFPE kidney tumor specimens after a DTF of ≥2 hr. Reductions in H-score and/or staining intensity were observed for c-MET, p53, PAX2, PAX8, pAKT, and survivin, whereas increases were observed for RCC1, EGFR, and CD10. Prolonged TIF of 72 hr resulted in significantly reduced H-scores of CD44 and c-Met in kidney tumor specimens, compared with controls with 12-hr TIF. An elevated probability of altered staining intensity due to DTF was observed for nine antigens, whereas for prolonged TIF an elevated probability was observed for one antigen. Results reported here and elsewhere across tumor types and antigens support limiting DTF to ≤1 hr when possible and fixing tissues in formalin for 12-24 hr to avoid confounding effects of these preanalytical factors on IHC.


Subject(s)
Biomarkers, Tumor/analysis , Immunohistochemistry/methods , Formaldehyde , Humans , Kidney Neoplasms/pathology , Paraffin Embedding , Tissue Fixation
6.
Cell Syst ; 11(6): 573-588.e9, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33031741

ABSTRACT

The antibody repertoire possesses near-limitless diversity, enabling the adaptive immune system to accommodate essentially any antigen. However, this diversity explores the antigenic space unequally, allowing some pathogens like influenza virus to impose complex immunodominance hierarchies that distract antibody responses away from key sites of virus vulnerability. We developed a computational model of affinity maturation to map the patterns of immunodominance that evolve upon immunization with natural and engineered displays of hemagglutinin (HA), the influenza vaccine antigen. Based on this knowledge, we designed immunization protocols that subvert immune distraction and focus serum antibody responses upon a functionally conserved, but immunologically recessive, target of human broadly neutralizing antibodies. We tested in silico predictions by vaccinating transgenic mice in which antibody diversity was humanized to mirror clinically relevant humoral output. Collectively, our results demonstrate that complex patterns in antibody immunogenicity can be rationally defined and then manipulated to elicit engineered immunity.


Subject(s)
B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/metabolism , Influenza A Virus, H1N1 Subtype/immunology , Animals , Disease Models, Animal , Humans , Mice
7.
Cell Rep ; 32(8): 108065, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32846123

ABSTRACT

B cell receptors (BCRs) display a combination of variable (V)-gene-encoded complementarity determining regions (CDRs) and adaptive/hypervariable CDR3 loops to engage antigens. It has long been proposed that the former tune for recognition of pathogens or groups of pathogens. To experimentally evaluate this within the human antibody repertoire, we perform immune challenges in transgenic mice that bear diverse human CDR3 and light chains but are constrained to different human VH-genes. We find that, of six commonly deployed VH sequences, only those CDRs encoded by IGHV1-2∗02 enable polyclonal antibody responses against bacterial lipopolysaccharide (LPS) when introduced to the bloodstream. The LPS is from diverse strains of gram-negative bacteria, and the VH-gene-dependent responses are directed against the non-variable and universal saccrolipid substructure of this antigen. This reveals a broad-spectrum anti-LPS response in which germline-encoded CDRs naturally hardwire the human antibody repertoire for recognition of a conserved microbial target.


Subject(s)
Immunoglobulin Variable Region/metabolism , Lipopolysaccharides/immunology , Animals , Humans , Mice , Mice, Transgenic
8.
Immunity ; 51(4): 735-749.e8, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31563464

ABSTRACT

Antibody paratopes are formed by hypervariable complementarity-determining regions (CDRH3s) and variable gene-encoded CDRs. The latter show biased usage in human broadly neutralizing antibodies (bnAbs) against both HIV and influenza virus, suggesting the existence of gene-endowed targeting solutions that may be amenable to pathway amplification. To test this, we generated transgenic mice with human CDRH3 diversity but simultaneously constrained to individual user-defined human immunoglobulin variable heavy-chain (VH) genes, including IGHV1-69, which shows biased usage in human bnAbs targeting the hemagglutinin stalk of group 1 influenza A viruses. Sequential immunization with a stalk-only hemagglutinin nanoparticle elicited group 1 bnAbs, but only in IGHV1-69 mice. This VH-endowed response required minimal affinity maturation, was elicited alongside pre-existing influenza immunity, and when IGHV1-69 B cells were diluted to match the frequency measured in humans. These results indicate that the human repertoire could, in principle, support germline-encoded bnAb elicitation using a single recombinant hemagglutinin immunogen.


Subject(s)
Antibodies, Viral/metabolism , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/metabolism , Influenza A virus/physiology , Influenza Vaccines/immunology , Influenza, Human/immunology , Receptors, Antigen, B-Cell/genetics , Animals , Antibodies, Viral/genetics , Antibody Affinity , Broadly Neutralizing Antibodies/genetics , Complementarity Determining Regions/genetics , Germ-Line Mutation/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunity, Humoral , Immunization, Secondary , Immunoglobulin Heavy Chains/genetics , Mice , Mice, Transgenic , Nanoparticles , Protein Engineering
10.
J Histochem Cytochem ; 67(3): 159-168, 2019 03.
Article in English | MEDLINE | ID: mdl-30562131

ABSTRACT

Although there are thousands of formalin-fixed paraffin-embedded (FFPE) tissue blocks potentially available for scientific research, many are of questionable quality, partly due to unknown preanalytical variables. We analyzed FFPE tissue biospecimens as part of the National Cancer Institute (NCI) Biospecimen Preanalytical Variables program to identify mRNA markers denoting cold ischemic time. The mRNA was extracted from colon, kidney, and ovary cancer FFPE blocks (40 patients, 10-12 hr fixation time) with 1, 2, 3, and 12 hr cold ischemic times, then analyzed using qRT-PCR for 23 genes selected following a literature search. No genes tested could determine short ischemic times (1-3 hr). However, a combination of three unstable genes normalized to a more stable gene could generate a "Cold Ischemia Score" that could distinguish 1 to 3 hr cold ischemia from 12 hr cold ischemia with 62% sensitivity and 84% specificity.


Subject(s)
Cold Ischemia/methods , Colonic Neoplasms/genetics , Kidney Neoplasms/genetics , Neoplasm Proteins/genetics , Ovarian Neoplasms/genetics , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Female , Fixatives/chemistry , Formaldehyde/chemistry , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Male , Neoplasm Proteins/metabolism , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Paraffin Embedding/methods , RNA, Messenger/metabolism , Time Factors , Tissue Fixation/methods , Transcriptome
11.
Biopreserv Biobank ; 16(6): 467-476, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30234371

ABSTRACT

Although there are millions of formalin-fixed paraffin-embedded (FFPE) tissue blocks potentially available for scientific research, many are of questionable quality, partly due to unknown fixation conditions. We analyzed FFPE tissue biospecimens as part of the NCI Biospecimen Preanalytical Variables (BPV) program to identify microRNA (miRNA) markers for fixation time. miRNA was extracted from kidney and ovary tumor FFPE blocks (19 patients, cold ischemia ≤2 hours) with 6, 12, 24, and 72 hours fixation times, then analyzed using the WaferGen SmartChip platform (miRNA chip with 1036 miRNA targets). For fixation time, principal component analysis of miRNA chip expression data separated 72 hours fixed samples from 6 to 24 hours fixed samples. A set of small nuclear RNA (snRNA) targets was identified that best determines fixation time and was validated using a second independent cohort of seven different tissue types. A customized assay was then developed, based on a set of 24 miRNA and snRNA targets, and a simple "snoRNA score" defined. This score detects FFPE tissue samples with fixation for 72 hours or more, with 79% sensitivity and 80% specificity. It can therefore be used to assess the fitness-for-purpose of FFPE samples for DNA or RNA-based research or clinical assays, which are known to be of limited robustness to formalin overfixation.


Subject(s)
RNA, Small Nucleolar/analysis , Tissue Banks/standards , Tissue Fixation/methods , Female , Fixatives , Formaldehyde , Humans , Kidney/chemistry , MicroRNAs/analysis , MicroRNAs/genetics , MicroRNAs/standards , Oligonucleotide Array Sequence Analysis/methods , Ovarian Neoplasms/chemistry , Ovarian Neoplasms/genetics , Paraffin Embedding , Quality Control , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/standards , Tissue Fixation/standards
12.
PLoS Genet ; 13(11): e1007087, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29166413

ABSTRACT

Multiple Myeloma (MM) is a plasma cell malignancy with significantly greater incidence and mortality rates among African Americans (AA) compared to Caucasians (CA). The overall goal of this study is to elucidate differences in molecular alterations in MM as a function of self-reported race and genetic ancestry. Our study utilized somatic whole exome, RNA-sequencing, and correlated clinical data from 718 MM patients from the Multiple Myeloma Research Foundation CoMMpass study Interim Analysis 9. Somatic mutational analyses based upon self-reported race corrected for ancestry revealed significant differences in mutation frequency between groups. Of interest, BCL7A, BRWD3, and AUTS2 demonstrate significantly higher mutation frequencies among AA cases. These genes are all involved in translocations in B-cell malignancies. Moreover, we detected a significant difference in mutation frequency of TP53 and IRF4 with frequencies higher among CA cases. Our study provides rationale for interrogating diverse tumor cohorts to best understand tumor genomics across populations.


Subject(s)
Interferon Regulatory Factors/genetics , Microfilament Proteins/genetics , Multiple Myeloma/genetics , Oncogene Proteins/genetics , Proteins/genetics , Transcription Factors/genetics , Tumor Suppressor Protein p53/genetics , Adult , Black People/genetics , Cytoskeletal Proteins , Exome/genetics , Female , Genotype , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Multiple Myeloma/epidemiology , Multiple Myeloma/pathology , Mutation , Mutation Rate , Racial Groups , White People/genetics
13.
J Clin Oncol ; 29(16): 2282-90, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21519016

ABSTRACT

Practice-changing evidence requires confirmation, preferably in multi-institutional clinical trials. The collection of tissue within such trials has enabled biomarker studies and evaluation of companion diagnostic tests. Tissue microarrays (TMAs) have become a standard approach in many cooperative oncology groups. A principal goal is to maximize the number of assays with this precious tissue. However, production strategies for these arrays have not been standardized, possibly decreasing the value of the study. In this article, members of the Cancer and Leukemia Group B Pathology Committee relay our experiences as array facility directors and propose guidelines regarding the production of high-quality TMAs for cooperative group studies. We also discuss statistical issues arising from having a proportion of patients available for TMAs and the possibility that patients with TMAs fail to represent the greater study population.


Subject(s)
Biomarkers, Tumor/analysis , Tissue Array Analysis/methods , Clinical Trials as Topic , Humans , Multicenter Studies as Topic , Specimen Handling/methods
14.
J Clin Oncol ; 28(31): 4674-82, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20876420

ABSTRACT

PURPOSE: We performed a case-control genome-wide association study (GWAS) to identify single nucleotide polymorphisms (SNPs) associated with musculoskeletal adverse events (MS-AEs) in women treated with aromatase inhibitors (AIs) for early breast cancer. PATIENTS AND METHODS: A nested case-control design was used to select patients enrolled onto the MA.27 phase III trial comparing anastrozole with exemestane. Cases were matched to two controls and were defined as patients with grade 3 or 4 MS-AEs (according to the National Cancer Institute's Common Terminology Criteria for Adverse Events v3.0) or those who discontinued treatment for any grade of MS-AE within the first 2 years. Genotyping was performed with the Illumina Human610-Quad BeadChip. RESULTS: The GWAS included 293 cases and 585 controls. A total of 551,358 SNPs were analyzed, followed by imputation and fine mapping of a region of interest on chromosome 14. Four SNPs on chromosome 14 had the lowest P values (2.23E-06 to 6.67E-07). T-cell leukemia 1A (TCL1A) was the gene closest (926-7000 bp) to the four SNPs. Functional genomic studies revealed that one of these SNPs (rs11849538) created an estrogen response element and that TCL1A expression was estrogen dependent, was associated with the variant SNP genotypes in estradiol-treated lymphoblastoid cells transfected with estrogen receptor alpha and was directly related to interleukin 17 receptor A (IL17RA) expression. CONCLUSION: This GWAS identified SNPs associated with MS-AEs in women treated with AIs and with a gene (TCL1A) which, in turn, was related to a cytokine (IL17). These findings provide a focus for further research to identify patients at risk for MS-AEs and to explore the mechanisms for these adverse events.


Subject(s)
Antineoplastic Agents/adverse effects , Aromatase Inhibitors/adverse effects , Breast Neoplasms/drug therapy , Chromosomes, Human, Pair 14 , Musculoskeletal System/drug effects , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins/genetics , Receptors, Interleukin-17/metabolism , Aged , Aged, 80 and over , Anastrozole , Androstadienes/adverse effects , Antineoplastic Agents/administration & dosage , Aromatase Inhibitors/administration & dosage , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Case-Control Studies , Chromosome Mapping , Clinical Trials, Phase III as Topic , Estrogens/metabolism , Female , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Genotype , Humans , Logistic Models , Middle Aged , Neoplasm Staging , Nitriles/adverse effects , Postmenopause , Randomized Controlled Trials as Topic , Retrospective Studies , Severity of Illness Index , Triazoles/adverse effects
15.
Nat Methods ; 4(11): 927-9, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17952087

ABSTRACT

G protein-coupled receptors (GPCRs) constitute the largest family of signaling proteins in mammals, mediating responses to hormones, neurotransmitters, and senses of sight, smell and taste. Mechanistic insight into GPCR signal transduction is limited by a paucity of high-resolution structural information. We describe the generation of a monoclonal antibody that recognizes the third intracellular loop (IL3) of the native human beta(2) adrenergic (beta(2)AR) receptor; this antibody was critical for acquiring diffraction-quality crystals.


Subject(s)
Antibodies, Monoclonal/immunology , Receptors, Adrenergic, beta-2/immunology , Receptors, G-Protein-Coupled/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/biosynthesis , Antigen-Antibody Reactions/immunology , Blotting, Western , Crystallization/methods , Crystallography , Epitopes/chemistry , Epitopes/immunology , Fluorescent Dyes/chemistry , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Mice , Molecular Sequence Data , Protein Structure, Tertiary , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/genetics , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Rhodamines/chemistry , Vaccination
16.
J Physiol ; 556(Pt 3): 691-710, 2004 May 01.
Article in English | MEDLINE | ID: mdl-14990679

ABSTRACT

The molecular basis of mechanosensory transduction by primary sensory neurones remains poorly understood. Amongst candidate transducer molecules are members of the acid-sensing ion channel (ASIC) family; nerve fibre recordings have shown ASIC2 and ASIC3 null mutants have aberrant responses to suprathreshold mechanical stimuli. Using the neuronal cell body as a model of the sensory terminal we investigated if ASIC2 or 3 contributed to mechanically activated currents in dorsal root ganglion (DRG) neurones. We cultured neurones from ASIC2 and ASIC3 null mutants and compared response properties with those of wild-type controls. Neuronal subpopulations [categorized by cell size, action potential duration and isolectin B4 (IB4) binding] generated distinct responses to mechanical stimulation consistent with their predicted in vivo phenotypes. In particular, there was a striking relationship between action potential duration and mechanosensitivity as has been observed in vivo. Putative low threshold mechanoreceptors exhibited rapidly adapting mechanically activated currents. Conversely, when nociceptors responded they displayed slowly or intermediately adapting currents that were smaller in amplitude than responses of low threshold mechanoreceptor neurones. No differences in current amplitude or kinetics were found between ASIC2 and/or ASIC3 null mutants and controls. Ruthenium red (5 microm) blocked mechanically activated currents in a voltage-dependent manner, with equal efficacy in wild-type and knockout animals. Analysis of proton-gated currents revealed that in wild-type and ASIC2/3 double knockout mice the majority of putative low threshold mechanoreceptors did not exhibit ASIC-like currents but exhibited a persistent current in response to low pH. Our findings are consistent with another ion channel type being important in DRG mechanotransduction.


Subject(s)
Mechanotransduction, Cellular/physiology , Membrane Proteins/physiology , Nerve Tissue Proteins/physiology , Neurons, Afferent/physiology , Sodium Channels/physiology , Acid Sensing Ion Channels , Action Potentials/drug effects , Action Potentials/physiology , Animals , Brain Chemistry , Capsaicin/pharmacology , Cells, Cultured , Ganglia, Spinal/chemistry , Ganglia, Spinal/drug effects , Ganglia, Spinal/physiology , Gene Expression/genetics , Hydrogen-Ion Concentration , Kinetics , Mechanotransduction, Cellular/drug effects , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Nerve Tissue Proteins/genetics , Neurons, Afferent/chemistry , Neurons, Afferent/drug effects , Nociceptors/physiology , Patch-Clamp Techniques , Physical Stimulation , Reverse Transcriptase Polymerase Chain Reaction , Ruthenium Red/pharmacology , Sodium Channels/genetics , Spinal Cord/chemistry , Stress, Mechanical , Tetrodotoxin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...