Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Skin Res Technol ; 30(3): e13622, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38500350

ABSTRACT

BACKGROUND AND OBJECTIVE: Skin thermal diffusivity plays a crucial role in various applications, including laser therapy and cryogenic skin cooling.This study investigates the correlation between skin thermal diffusivity and two important skin parameters, melanin content and erythema, in a cohort of 102 participants. METHODS: An in-house developed device based on transient temperature measurement was used to assess thermal diffusivity at different body locations. Melanin content and erythema were measured using a colorimeter. Statistical analysis was performed to examine potential correlations. RESULTS: The results showed that the measured thermal diffusivity values were consistent with previous reports, with variations observed among subjects. No significant correlation was found between thermal diffusivity and melanin content or erythema. This suggests that other factors, such as skin hydration or epidermis thickness, may have a more dominant influence on skin thermal properties. CONLCUSION: This research provides valuable insights into the complex interplay between skin thermal properties and physiological parameters, with potential implications for cosmetic and clinical dermatology applications.


Subject(s)
Melanins , Skin Pigmentation , Humans , Skin/diagnostic imaging , Erythema , Epidermis
2.
JAMA Netw Open ; 7(2): e2356479, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38363565

ABSTRACT

Importance: The COVID-19 pandemic resulted in delayed access to medical care. Restrictions to health care specialists, staff shortages, and fear of SARS-CoV-2 infection led to interruptions in routine care, such as early melanoma detection; however, premature mortality and economic burden associated with this postponement have not been studied yet. Objective: To determine the premature mortality and economic costs associated with suspended melanoma screenings during COVID-19 pandemic lockdowns by estimating the total burden of delayed melanoma diagnoses for Europe. Design, Setting, and Participants: This multicenter economic evaluation used population-based data from patients aged at least 18 years with invasive primary cutaneous melanomas stages I to IV according to the American Joint Committee on Cancer (AJCC) seventh and eighth editions, including melanomas of unknown primary (T0). Data were collected from January 2017 to December 2021 in Switzerland and from January 2019 to December 2021 in Hungary. Data were used to develop an estimation of melanoma upstaging rates in AJCC stages, which was verified with peripandemic data. Years of life lost (YLL) were calculated and were, together with cost data, used for financial estimations. The total financial burden was assessed through direct and indirect treatment costs. Models were building using data from 50 072 patients aged 18 years and older with invasive primary cutaneous melanomas stages I to IV according to the AJCC seventh and eighth edition, including melanomas of unknown primary (T0) from 2 European tertiary centers. Data from European cancer registries included patient-based direct and indirect cost data, country-level economic indicators, melanoma incidence, and population rates per country. Data were analyzed from July 2021 to September 2022. Exposure: COVID-19 lockdown-related delay of melanoma detection and consecutive public health and economic burden. As lockdown restrictions varied by country, lockdown scenario was defined as elimination of routine medical examinations and severely restricted access to follow-up examinations for at least 4 weeks. Main Outcomes and Measures: Primary outcomes were the total burden of a delay in melanoma diagnosis during COVID-19 lockdown periods, measured using the direct (in US$) and indirect (calculated as YLL plus years lost due to disability [YLD] and disability-adjusted life-years [DALYs]) costs for Europe. Secondary outcomes included estimation of upstaging rate, estimated YLD, YLL, and DALY for each European country, absolute direct and indirect treatment costs per European country, proportion of the relative direct and indirect treatment costs for the countries, and European health expenditure. Results: There were an estimated 111 464 (range, 52 454-295 051) YLL due to pandemic-associated delay in melanoma diagnosis in Europe, and estimated total additional costs were $7.65 (range, $3.60 to $20.25) billion. Indirect treatment costs were the main cost driver, accounting for 94.5% of total costs. Estimates for YLD in Europe resulted in 15 360 years for the 17% upstaging model, ranging from 7228 years (8% upstaging model) to 40 660 years (45% upstaging model). Together, YLL and YLD constitute the overall disease burden, ranging from 59 682 DALYs (8% upstaging model) to 335 711 DALYs (45% upstaging model), with 126 824 DALYs for the real-world 17% scenario. Conclusions and Relevance: This economic analysis emphasizes the importance of continuing secondary skin cancer prevention measures during pandemics. Beyond the personal outcomes of a delayed melanoma diagnosis, the additional economic and public health consequences are underscored, emphasizing the need to include indirect economic costs in future decision-making processes. These estimates on DALYs and the associated financial losses complement previous studies highlighting the cost-effectiveness of screening for melanoma.


Subject(s)
COVID-19 , Melanoma , Neoplasms, Unknown Primary , Skin Neoplasms , Humans , Adolescent , Adult , Melanoma/diagnosis , Melanoma/epidemiology , Pandemics , Neoplasms, Unknown Primary/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , Communicable Disease Control , Europe/epidemiology , Cost of Illness , Skin Neoplasms/diagnosis , Skin Neoplasms/epidemiology , COVID-19 Testing
3.
Cancers (Basel) ; 15(24)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38136411

ABSTRACT

The incidence of cutaneous melanoma continues to rise despite the increased use of sunscreens within the last several decades. Some research even suggests that the use of sunscreen is associated with increased rates of melanoma. Given the aggressive, and often deadly, nature of cutaneous melanoma, the aim of this communication is to better elucidate the relationship between sunscreen use and melanoma development and if there are other preventative measures to be aware of. A search was performed to identify the studies that have investigated melanoma development in individuals who used sunscreen and those who did not. Study limitations and possible confounding variables were identified, which guided a subsequent search to determine what data were available to support that these limitations and confounding variables may explain the perplexing association between sunscreen use and melanoma development. Five hypotheses were generated, which were related to increased awareness and reporting, the relationship between sunscreen use and the duration of sun exposure, the importance of broad-spectrum protection, and the effect of sunscreen on reactive oxygen species formation. The main conclusion is that more recent studies that control for confounding variables are required to determine the true effect of adequate broad-spectrum sunscreen use today on the development of melanoma.

4.
Front Med (Lausanne) ; 10: 1231436, 2023.
Article in English | MEDLINE | ID: mdl-37928464

ABSTRACT

Background: The development of artificial intelligence (AI)-based algorithms and advances in medical domains rely on large datasets. A recent advancement in text-to-image generative AI is GLIDE (Guided Language to Image Diffusion for Generation and Editing). There are a number of representations available in the GLIDE model, but it has not been refined for medical applications. Methods: For text-conditional image synthesis with classifier-free guidance, we have fine-tuned GLIDE using 10,015 dermoscopic images of seven diagnostic entities, including melanoma and melanocytic nevi. Photorealistic synthetic samples of each diagnostic entity were created by the algorithm. Following this, an experienced dermatologist reviewed 140 images (20 of each entity), with 10 samples originating from artificial intelligence and 10 from original images from the dataset. The dermatologist classified the provided images according to the seven diagnostic entities. Additionally, the dermatologist was asked to indicate whether or not a particular image was created by AI. Further, we trained a deep learning model to compare the diagnostic results of dermatologist versus machine for entity classification. Results: The results indicate that the generated images possess varying degrees of quality and realism, with melanocytic nevi and melanoma having higher similarity to real images than other classes. The integration of synthetic images improved the classification performance of the model, resulting in higher accuracy and precision. The AI assessment showed superior classification performance compared to dermatologist. Conclusion: Overall, the results highlight the potential of synthetic images for training and improving AI models in dermatology to overcome data scarcity.

5.
bioRxiv ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38014031

ABSTRACT

Microphthalmia-associated transcription factor (MITF) plays pivotal roles in melanocyte development, function, and melanoma pathogenesis. MITF amplification occurs in melanoma and has been associated with resistance to targeted therapies. Here, we show that MITF regulates a global antioxidant program that increases survival of melanoma cell lines by protecting the cells from reactive oxygen species (ROS)-induced damage. In addition, this redox program is correlated with MITF expression in human melanoma cell lines and patient-derived melanoma samples. Using a zebrafish melanoma model, we show that MITF decreases ROS-mediated DNA damage in vivo . Some of the MITF target genes involved, such as IDH1 and NNT , are regulated through direct MITF binding to canonical enhancer box (E-BOX) sequences proximal to their promoters. Utilizing functional experiments, we demonstrate the role of MITF and its target genes in reducing cytosolic and mitochondrial ROS. Collectively, our data identify MITF as a significant driver of the cellular antioxidant state. One Sentence Summary: MITF promote melanoma survival via increasing ROS tolerance.

6.
Nutrients ; 15(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36678315

ABSTRACT

Disrupted biological function, manifesting through the hallmarks of aging, poses one of the largest threats to healthspan and risk of disease development, such as metabolic disorders, cardiovascular ailments, and neurodegeneration. In recent years, numerous geroprotectors, senolytics, and other nutraceuticals have emerged as potential disruptors of aging and may be viable interventions in the immediate state of human longevity science. In this review, we focus on the decrease in nicotinamide adenine dinucleotide (NAD+) with age and the supplementation of NAD+ precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), in combination with other geroprotective compounds, to restore NAD+ levels present in youth. Furthermore, these geroprotectors may enhance the efficacy of NMN supplementation while concurrently providing their own numerous health benefits. By analyzing the prevention of NAD+ degradation through the inhibition of CD38 or supporting protective downstream agents of SIRT1, we provide a potential framework of the CD38/NAD+/SIRT1 axis through which geroprotectors may enhance the efficacy of NAD+ precursor supplementation and reduce the risk of age-related diseases, thereby potentiating healthspan in humans.


Subject(s)
NAD , Sirtuin 1 , Humans , Adolescent , NAD/metabolism , Senotherapeutics , Niacinamide/pharmacology , Niacinamide/metabolism , Nicotinamide Mononucleotide , Nucleotides , Dietary Supplements
7.
Dermatol Online J ; 28(5)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36809139

ABSTRACT

A 4-year-old boy presented with blistering on his face and distal upper and lower extremities. Subepidermal blisters containing neutrophils and eosinophils visualized on histology supported the diagnosis of linear IgA bullous dermatosis of childhood (LABDC). The dermatosis presents with vesicles and tense blisters in an annular distribution, erythematous papules, and/or excoriated plaques. Histopathology shows subepidermal blisters with a neutrophilic infiltrate in the dermis, mainly concentrated at the tips of dermal papillae in the early stage of the disease, which can be mistaken for the pattern of neutrophilic infiltration as seen in dermatitis herpetiformis. Dapsone is the treatment of choice, which is started at a dosage of 0.5mg/kg/day. Linear IgA bullous dermatosis of childhood is a rare autoimmune disease that can be mistaken for other conditions with similar presentations but should always be considered in the differential diagnosis of children with blistering.


Subject(s)
Autoimmune Diseases , Linear IgA Bullous Dermatosis , Male , Child , Humans , Child, Preschool , Linear IgA Bullous Dermatosis/pathology , Blister/pathology , Autoimmune Diseases/pathology , Dapsone , Neutrophils/pathology , Immunoglobulin A
9.
Rapid Commun Mass Spectrom ; 35(13): e9095, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33821547

ABSTRACT

RATIONALE: As a new approach to DNA adductomics, we directly reacted intact, double-stranded (ds)-DNA under warm conditions with an alkylating mass tag followed by analysis by liquid chromatography/mass spectrometry. This method is based on the tendency of adducted nucleobases to locally disrupt the DNA structure (forming a "DNA bubble") potentially increasing exposure of their nucleophilic (including active hydrogen) sites for preferential alkylation. Also encouraging this strategy is that the scope of nucleotide excision repair is very broad, and this system primarily recognizes DNA bubbles. METHODS: A cationic xylyl (CAX) mass tag with limited nonpolarity was selected to increase the retention of polar adducts in reversed-phase high-performance liquid chromatography (HPLC) for more detectability while maintaining resolution. We thereby detected a diversity of DNA adducts (mostly polar) by the following sequence of steps: (1) react DNA at 45°C for 2 h under aqueous conditions with CAX-B (has a benzyl bromide functional group to label active hydrogen sites) in the presence of triethylamine; (2) remove residual reagents by precipitating and washing the DNA (a convenient step); (3) digest the DNA enzymatically to nucleotides and remove unlabeled nucleotides by nonpolar solid-phase extraction (also a convenient step); and (4) detect CAX-labeled, adducted nucleotides by LC/MS2 or a matrix-assisted laser desorption/ionization (MALDI)-MS technique. RESULTS: Examples of the 42 DNA or RNA adducts detected, or tentatively so based on accurate mass and fragmentation data, are as follows: 8-oxo-dGMP, ethyl-dGMP, hydroxyethyl-dGMP (four isomers, all HPLC-resolved), uracil-glycol, apurinic/apyrimidinic sites, benzo[a]pyrene-dGMP, and, for the first time, benzoquinone-hydroxymethyl-dCMP. Importantly, these adducts are detected in a single procedure under a single set of conditions. Sensitivity, however, is only defined in a preliminary way, namely the latter adduct seems to be detected at a level of about 4 adducts in 109 nucleotides (S/N ~30). CONCLUSIONS: CAX-Prelabeling is an emerging new technique for DNA adductomics, providing polar DNA adductomics in a practical way for the first time. Further study of the method is encouraged to better characterize and extend its performance, especially in scope and sensitivity.


Subject(s)
DNA Adducts/analysis , Animals , Benzo(a)pyrene/analysis , Benzyl Compounds , Cations , Cattle , Chromatography, High Pressure Liquid , DNA Adducts/chemistry , DNA Adducts/metabolism , Ethylamines , Guanine/analogs & derivatives , Guanine/analysis , Humans , Nucleotides/metabolism , Phosphorus Radioisotopes , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Uracil/analogs & derivatives , Uracil/analysis
10.
Sci Transl Med ; 13(581)2021 02 17.
Article in English | MEDLINE | ID: mdl-33597266

ABSTRACT

Although immune checkpoint inhibitors (ICIs), such as anti-programmed cell death protein-1 (PD-1), can deliver durable antitumor effects, most patients with cancer fail to respond. Recent studies suggest that ICI efficacy correlates with a higher load of tumor-specific neoantigens and development of vitiligo in patients with melanoma. Here, we report that patients with low melanoma neoantigen burdens who responded to ICI had tumors with higher expression of pigmentation-related genes. Moreover, expansion of peripheral blood CD8+ T cell populations specific for melanocyte antigens was observed only in patients who responded to anti-PD-1 therapy, suggesting that ICI can promote breakdown of tolerance toward tumor-lineage self-antigens. In a mouse model of poorly immunogenic melanomas, spreading of epitope recognition toward wild-type melanocyte antigens was associated with markedly improved anti-PD-1 efficacy in two independent approaches: introduction of neoantigens by ultraviolet (UV) B radiation mutagenesis or the therapeutic combination of ablative fractional photothermolysis plus imiquimod. Complete responses against UV mutation-bearing tumors after anti-PD-1 resulted in protection from subsequent engraftment of melanomas lacking any shared neoantigens, as well as pancreatic adenocarcinomas forcibly overexpressing melanocyte-lineage antigens. Our data demonstrate that somatic mutations are sufficient to provoke strong antitumor responses after checkpoint blockade, but long-term responses are not restricted to these putative neoantigens. Epitope spreading toward T cell recognition of wild-type tumor-lineage self-antigens represents a common pathway for successful response to ICI, which can be evoked in neoantigen-deficient tumors by combination therapy with ablative fractional photothermolysis and imiquimod.


Subject(s)
Immune Checkpoint Inhibitors , Melanoma , Animals , Antigens, Neoplasm , Epitopes , Humans , Melanocytes , Melanoma/therapy , Mice
12.
Article in English | MEDLINE | ID: mdl-32551641

ABSTRACT

While MALDI-MS of intact genomic DNA is unheard of, actually many DNA adducts can be detected in this way under certain MALDI conditions: relatively high molar ratio of DNA nucleobases to matrix (0.01 to 0.3), hot matrix (CCA), and high laser fluence. This is because many DNA adducts create "bubbles" on dsDNA (disruption of base pairing), making it easier for these adducts as modified nucleobases to be jettisoned by the laser-derived energy of MALDI (jettison mass spectrometry or JeMS). The method also works for other nucleic acid species, namely nucleobases, nucleosides, nucleotides, and RNA. Examples of what we have detected in this way are as follows: methyladenine in E. coli DNA, 5-hydroxymethylcytosine in human brain DNA, melphalan-adenine in leukocyte DNA from patients on corresponding chemotherapy, wybutosine in tRNA, benzyl DNA adducts in E. coli cell culture treated with benzyl bromide, and various DNA adducts formed in test tube exposure experiments with calf thymus DNA. Noteworthy, in the chemotherapy study, principle component analysis of the data encourages the hypothesis that patient DNA undergoes much more damage than just melphalan adducts. Overall, our work leads to the preliminary generalization that about 5 fmol of a nucleobase deficient in base pairing, and present in a MALDI spot, will be detected by JeMS (on the equipment that we used), irrespective of the type of nucleic acid species which houses it, as long as the nucleobase is relatively basic such as A, C, or G.

13.
J Biomed Opt ; 22(12): 1-10, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29222855

ABSTRACT

Chemical sun filters are commonly used as active ingredients in sunscreens due to their efficient absorption of ultraviolet (UV) radiation. Yet, it is known that these compounds can photochemically react with UV light and generate reactive oxygen species and oxidative stress in vitro, though this has yet to be validated in vivo. One label-free approach to probe oxidative stress is to measure and compare the relative endogenous fluorescence generated by cellular coenzymes nicotinamide adenine dinucleotides and flavin adenine dinucleotides. However, chemical sun filters are fluorescent, with emissive properties that contaminate endogenous fluorescent signals. To accurately distinguish the source of fluorescence in ex vivo skin samples treated with chemical sun filters, fluorescence lifetime imaging microscopy data were processed on a pixel-by-pixel basis using a non-Euclidean separation algorithm based on Mahalanobis distance and validated on simulated data. Applying this method, ex vivo samples exhibited a small oxidative shift when exposed to sun filters alone, though this shift was much smaller than that imparted by UV irradiation. Given the need for investigative tools to further study the clinical impact of chemical sun filters in patients, the reported methodology may be applied to visualize chemical sun filters and measure oxidative stress in patients' skin.


Subject(s)
Microscopy, Fluorescence , Oxidative Stress/drug effects , Skin/drug effects , Sunscreening Agents/pharmacology , Humans , Skin/pathology
14.
Nature ; 547(7664): 453-457, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28678785

ABSTRACT

Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumours and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood. Here we molecularly characterize this therapy-resistant high-mesenchymal cell state in human cancer cell lines and organoids and show that it depends on a druggable lipid-peroxidase pathway that protects against ferroptosis, a non-apoptotic form of cell death induced by the build-up of toxic lipid peroxides. We show that this cell state is characterized by activity of enzymes that promote the synthesis of polyunsaturated lipids. These lipids are the substrates for lipid peroxidation by lipoxygenase enzymes. This lipid metabolism creates a dependency on pathways converging on the phospholipid glutathione peroxidase (GPX4), a selenocysteine-containing enzyme that dissipates lipid peroxides and thereby prevents the iron-mediated reactions of peroxides that induce ferroptotic cell death. Dependency on GPX4 was found to exist across diverse therapy-resistant states characterized by high expression of ZEB1, including epithelial-mesenchymal transition in epithelial-derived carcinomas, TGFß-mediated therapy-resistance in melanoma, treatment-induced neuroendocrine transdifferentiation in prostate cancer, and sarcomas, which are fixed in a mesenchymal state owing to their cells of origin. We identify vulnerability to ferroptic cell death induced by inhibition of a lipid peroxidase pathway as a feature of therapy-resistant cancer cells across diverse mesenchymal cell-state contexts.


Subject(s)
Glutathione Peroxidase/metabolism , Lipid Peroxidation/drug effects , Neoplasms/drug therapy , Neoplasms/enzymology , Cadherins/metabolism , Cell Death , Cell Line, Tumor , Cell Lineage , Cell Transdifferentiation , Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition , Humans , Iron/metabolism , Lipid Peroxides/metabolism , Male , Melanoma/drug therapy , Melanoma/enzymology , Melanoma/metabolism , Melanoma/pathology , Mesoderm/drug effects , Mesoderm/enzymology , Mesoderm/metabolism , Mesoderm/pathology , Neoplasms/genetics , Neoplasms/pathology , Phospholipid Hydroperoxide Glutathione Peroxidase , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proteomics , Proto-Oncogene Proteins B-raf/genetics , Reproducibility of Results , Zinc Finger E-box-Binding Homeobox 1/genetics
15.
Cell Rep ; 19(11): 2177-2184, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28614705

ABSTRACT

The presence of dark melanin (eumelanin) within human epidermis represents one of the strongest predictors of low skin cancer risk. Topical rescue of eumelanin synthesis, previously achieved in "redhaired" Mc1r-deficient mice, demonstrated significant protection against UV damage. However, application of a topical strategy for human skin pigmentation has not been achieved, largely due to the greater barrier function of human epidermis. Salt-inducible kinase (SIK) has been demonstrated to regulate MITF, the master regulator of pigment gene expression, through its effects on CRTC and CREB activity. Here, we describe the development of small-molecule SIK inhibitors that were optimized for human skin penetration, resulting in MITF upregulation and induction of melanogenesis. When topically applied, pigment production was induced in Mc1r-deficient mice and normal human skin. These findings demonstrate a realistic pathway toward UV-independent topical modulation of human skin pigmentation, potentially impacting UV protection and skin cancer risk.


Subject(s)
Melanins/metabolism , Skin/metabolism , Ultraviolet Rays/adverse effects , Administration, Topical , Animals , Humans , Melanins/biosynthesis , Mice , Mice, Inbred C57BL , Mice, Transgenic
16.
Nat Commun ; 8: 15866, 2017 06 28.
Article in English | MEDLINE | ID: mdl-28656962

ABSTRACT

Germline mutations in the Folliculin (FLCN) tumour suppressor gene result in fibrofolliculomas, lung cysts and renal cancers, but the precise mechanisms of tumour suppression by FLCN remain elusive. Here we identify Rab7A, a small GTPase important for endocytic trafficking, as a novel FLCN interacting protein and demonstrate that FLCN acts as a Rab7A GTPase-activating protein. FLCN-/- cells display slower trafficking of epidermal growth factor receptors (EGFR) from early to late endosomes and enhanced activation of EGFR signalling upon ligand stimulation. Reintroduction of wild-type FLCN, but not tumour-associated FLCN mutants, suppresses EGFR signalling in a Rab7A-dependent manner. EGFR signalling is elevated in FLCN-/- tumours and the EGFR inhibitor afatinib suppresses the growth of human FLCN-/- cells as tumour xenografts. The functional interaction between FLCN and Rab7A appears conserved across species. Our work highlights a mechanism explaining, at least in part, the tumour suppressor function of FLCN.


Subject(s)
Kidney Neoplasms/metabolism , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Birt-Hogg-Dube Syndrome/genetics , Birt-Hogg-Dube Syndrome/pathology , Cell Line, Tumor , Endosomes/genetics , Endosomes/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Male , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Proto-Oncogene Proteins/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Signal Transduction , Tumor Suppressor Proteins/genetics , Xenograft Model Antitumor Assays , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding Proteins
17.
Sci Rep ; 6: 37986, 2016 11 28.
Article in English | MEDLINE | ID: mdl-27892516

ABSTRACT

Melanoma is the most deadly form of skin cancer with a yearly global incidence over 232,000 patients. Individuals with fair skin and red hair exhibit the highest risk for developing melanoma, with evidence suggesting the red/blond pigment known as pheomelanin may elevate melanoma risk through both UV radiation-dependent and -independent mechanisms. Although the ability to identify, characterize, and monitor pheomelanin within skin is vital for improving our understanding of the underlying biology of these lesions, no tools exist for real-time, in vivo detection of the pigment. Here we show that the distribution of pheomelanin in cells and tissues can be visually characterized non-destructively and noninvasively in vivo with coherent anti-Stokes Raman scattering (CARS) microscopy, a label-free vibrational imaging technique. We validated our CARS imaging strategy in vitro to in vivo with synthetic pheomelanin, isolated melanocytes, and the Mc1re/e, red-haired mouse model. Nests of pheomelanotic melanocytes were observed in the red-haired animals, but not in the genetically matched Mc1re/e; Tyrc/c ("albino-red-haired") mice. Importantly, samples from human amelanotic melanomas subjected to CARS imaging exhibited strong pheomelanotic signals. This is the first time, to our knowledge, that pheomelanin has been visualized and spatially localized in melanocytes, skin, and human amelanotic melanomas.


Subject(s)
Melanins/analysis , Melanocytes/metabolism , Melanoma, Amelanotic/metabolism , Molecular Imaging/methods , Spectrum Analysis, Raman/methods , Animals , Ear/diagnostic imaging , Flow Cytometry/methods , Humans , Melanins/metabolism , Mice, Mutant Strains , Mice, Transgenic , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Receptor, Melanocortin, Type 1/genetics , Skin/diagnostic imaging , Skin/metabolism , Skin Neoplasms/metabolism
20.
Cancer Cell ; 28(6): 773-784, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26678339

ABSTRACT

Heterozygous mutation of IDH1 in cancers modifies IDH1 enzymatic activity, reprogramming metabolite flux and markedly elevating 2-hydroxyglutarate (2-HG). Here, we found that 2-HG depletion did not inhibit growth of several IDH1 mutant solid cancer types. To identify other metabolic therapeutic targets, we systematically profiled metabolites in endogenous IDH1 mutant cancer cells after mutant IDH1 inhibition and discovered a profound vulnerability to depletion of the coenzyme NAD+. Mutant IDH1 lowered NAD+ levels by downregulating the NAD+ salvage pathway enzyme nicotinate phosphoribosyltransferase (Naprt1), sensitizing to NAD+ depletion via concomitant nicotinamide phosphoribosyltransferase (NAMPT) inhibition. NAD+ depletion activated the intracellular energy sensor AMPK, triggered autophagy, and resulted in cytotoxicity. Thus, we identify NAD+ depletion as a metabolic susceptibility of IDH1 mutant cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Cytokines/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Glioblastoma/drug therapy , Isocitrate Dehydrogenase/genetics , Mutation , NAD/deficiency , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , AMP-Activated Protein Kinases/metabolism , Animals , Autophagy/drug effects , Brain Neoplasms/enzymology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Proliferation/drug effects , Cytokines/metabolism , Energy Metabolism/drug effects , Enzyme Activation , Female , Glioblastoma/enzymology , Glioblastoma/genetics , Glioblastoma/pathology , Glutarates/metabolism , HEK293 Cells , Humans , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/metabolism , Metabolomics/methods , Mice, SCID , Molecular Targeted Therapy , Nicotinamide Phosphoribosyltransferase/metabolism , Pentosyltransferases/metabolism , Signal Transduction/drug effects , Spheroids, Cellular , Time Factors , Transfection , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...