Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Psychol Med ; 48(1): 82-94, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28545597

ABSTRACT

BACKGROUND: Our understanding of the complex relationship between schizophrenia symptomatology and etiological factors can be improved by studying brain-based correlates of schizophrenia. Research showed that impairments in value processing and executive functioning, which have been associated with prefrontal brain areas [particularly the medial orbitofrontal cortex (MOFC)], are linked to negative symptoms. Here we tested the hypothesis that MOFC thickness is associated with negative symptom severity. METHODS: This study included 1985 individuals with schizophrenia from 17 research groups around the world contributing to the ENIGMA Schizophrenia Working Group. Cortical thickness values were obtained from T1-weighted structural brain scans using FreeSurfer. A meta-analysis across sites was conducted over effect sizes from a model predicting cortical thickness by negative symptom score (harmonized Scale for the Assessment of Negative Symptoms or Positive and Negative Syndrome Scale scores). RESULTS: Meta-analytical results showed that left, but not right, MOFC thickness was significantly associated with negative symptom severity (ß std = -0.075; p = 0.019) after accounting for age, gender, and site. This effect remained significant (p = 0.036) in a model including overall illness severity. Covarying for duration of illness, age of onset, antipsychotic medication or handedness weakened the association of negative symptoms with left MOFC thickness. As part of a secondary analysis including 10 other prefrontal regions further associations in the left lateral orbitofrontal gyrus and pars opercularis emerged. CONCLUSIONS: Using an unusually large cohort and a meta-analytical approach, our findings point towards a link between prefrontal thinning and negative symptom severity in schizophrenia. This finding provides further insight into the relationship between structural brain abnormalities and negative symptoms in schizophrenia.


Subject(s)
Prefrontal Cortex/pathology , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Adult , Female , Functional Laterality , Humans , Image Processing, Computer-Assisted , Internationality , Linear Models , Magnetic Resonance Imaging , Male , Prefrontal Cortex/diagnostic imaging , Psychiatric Status Rating Scales , Schizophrenic Psychology
2.
Acta Psychiatr Scand ; 135(5): 439-447, 2017 May.
Article in English | MEDLINE | ID: mdl-28369804

ABSTRACT

OBJECTIVE: Based on the role of the superior temporal gyrus (STG) in auditory processing, language comprehension and self-monitoring, this study aimed to investigate the relationship between STG cortical thickness and positive symptom severity in schizophrenia. METHOD: This prospective meta-analysis includes data from 1987 individuals with schizophrenia collected at seventeen centres around the world that contribute to the ENIGMA Schizophrenia Working Group. STG thickness measures were extracted from T1-weighted brain scans using FreeSurfer. The study performed a meta-analysis of effect sizes across sites generated by a model predicting left or right STG thickness with a positive symptom severity score (harmonized SAPS or PANSS-positive scores), while controlling for age, sex and site. Secondary models investigated relationships between antipsychotic medication, duration of illness, overall illness severity, handedness and STG thickness. RESULTS: Positive symptom severity was negatively related to STG thickness in both hemispheres (left: ßstd = -0.052; P = 0.021; right: ßstd = -0.073; P = 0.001) when statistically controlling for age, sex and site. This effect remained stable in models including duration of illness, antipsychotic medication or handedness. CONCLUSION: Our findings further underline the important role of the STG in hallmark symptoms in schizophrenia. These findings can assist in advancing insight into symptom-relevant pathophysiological mechanisms in schizophrenia.


Subject(s)
Magnetic Resonance Imaging/methods , Schizophrenia/diagnostic imaging , Temporal Lobe/diagnostic imaging , Adult , Brain Mapping/methods , Female , Humans , Male , Prospective Studies , Psychiatric Status Rating Scales , Schizophrenia/pathology , Schizophrenic Psychology , Temporal Lobe/pathology
4.
Mol Psychiatry ; 21(4): 547-53, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26033243

ABSTRACT

The profile of brain structural abnormalities in schizophrenia is still not fully understood, despite decades of research using brain scans. To validate a prospective meta-analysis approach to analyzing multicenter neuroimaging data, we analyzed brain MRI scans from 2028 schizophrenia patients and 2540 healthy controls, assessed with standardized methods at 15 centers worldwide. We identified subcortical brain volumes that differentiated patients from controls, and ranked them according to their effect sizes. Compared with healthy controls, patients with schizophrenia had smaller hippocampus (Cohen's d=-0.46), amygdala (d=-0.31), thalamus (d=-0.31), accumbens (d=-0.25) and intracranial volumes (d=-0.12), as well as larger pallidum (d=0.21) and lateral ventricle volumes (d=0.37). Putamen and pallidum volume augmentations were positively associated with duration of illness and hippocampal deficits scaled with the proportion of unmedicated patients. Worldwide cooperative analyses of brain imaging data support a profile of subcortical abnormalities in schizophrenia, which is consistent with that based on traditional meta-analytic approaches. This first ENIGMA Schizophrenia Working Group study validates that collaborative data analyses can readily be used across brain phenotypes and disorders and encourages analysis and data sharing efforts to further our understanding of severe mental illness.


Subject(s)
Brain/pathology , Schizophrenia/pathology , Adult , Brain/diagnostic imaging , Brain Mapping , Case-Control Studies , Female , Functional Laterality , Humans , Image Processing, Computer-Assisted , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging , Prospective Studies , Schizophrenia/genetics
5.
Eur Psychiatry ; 30(7): 861-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26443054

ABSTRACT

Neurocognitive deficits are core symptoms of schizophrenia that determine a poorer outcome. High variability in the progression of neuropsychological deficits in schizophrenia has been described. It is still unknown whether genetic variations can affect the course of cognitive deficits. Variations in the Disrupted in Schizophrenia 1 (DISC1) gene have previously been associated with neurocognitive deficits. This study investigated the association between 3 DISC1 polymorphisms (rs6675281 (Leu607Phe), rs1000731, and rs821616 (Ser704Cys)) and long-term (3 years) cognitive performance. One-hundred-thirty-three Caucasian drug-naive patients experiencing a first episode of non-affective psychosis were genotyped. Cognitive function was assessed at baseline and after 3 years of initiating treatment. Other clinical and socio-demographic variables were recorded to eliminate potential confounding effects. Patients carrying the A allele of rs1000731 exhibited a significant improvement in Working Memory and Attention domains, and the homozygosity of the A allele of rs821616 showed a significant improvement in Motor Dexterity performance over 3 years of follow-up. In conclusion, DISC1 gene variations may affect the course of cognitive deficits found in patients suffering from the first episode of non-affective psychosis.


Subject(s)
Cognition Disorders/genetics , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Schizophrenia/genetics , Adult , Alleles , Cognition Disorders/diagnosis , Disease Progression , Female , Follow-Up Studies , Genotype , Humans , Male , Middle Aged , Psychotic Disorders/genetics , Schizophrenia/complications
6.
Psychol Med ; 45(13): 2861-71, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26004991

ABSTRACT

BACKGROUND: Cortical thickness measurement offers an index of brain development processes. In healthy individuals, cortical thickness is reduced with increasing age and is related to cognitive decline. Cortical thinning has been reported in schizophrenia. Whether cortical thickness changes differently over time in patients and its impact on outcome remain unanswered. METHOD: Data were examined from 109 patients and 76 healthy controls drawn from the Santander Longitudinal Study of first-episode schizophrenia for whom adequate structural magnetic resonance imaging (MRI) data were available (n = 555 scans). Clinical and cognitive assessments and MRIs were acquired at three regular time points during a 3-year follow-up period. We investigated likely progressive cortical thickness changes in schizophrenia during the first 3 years after initiating antipsychotic treatment. The effects of cortical thickness changes on cognitive and clinical variables were also examined along with the impact of potential confounding factors. RESULTS: There were significant diagnoses × scan time interaction main effects for total cortical thickness (F 1,309.1 = 4.60, p = 0.033) and frontal cortical thickness (F 1,310.6 = 5.30, p = 0.022), reflecting a lesser thinning over time in patients. Clinical and cognitive outcome was not associated with progressive cortical changes during the early years of the illness. CONCLUSIONS: Cortical thickness abnormalities do not unswervingly progress, at least throughout the first years of the illness. Previous studies have suggested that modifiable factors may partly account for cortical thickness abnormalities. Therefore, the importance of implementing practical actions that may modify those factors and improve them over the course of the illness should be highlighted.


Subject(s)
Antipsychotic Agents/therapeutic use , Cognition Disorders/pathology , Frontal Lobe/pathology , Magnetic Resonance Imaging/methods , Schizophrenia/drug therapy , Schizophrenia/pathology , Adolescent , Adult , Cross-Sectional Studies , Disease Progression , Female , Humans , Linear Models , Longitudinal Studies , Male , Middle Aged , Psychiatric Status Rating Scales , Spain , Young Adult
7.
Psychol Med ; 44(8): 1591-604, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24067252

ABSTRACT

BACKGROUND: Schizophrenia is a chronic brain disorder associated with structural brain abnormalities already present at the onset of the illness. Whether these brain abnormalities might progress over time is still under debate. METHOD: The aim of this study was to investigate likely progressive brain volume changes in schizophrenia during the first 3 years after initiating antipsychotic treatment. The study included 109 patients with a schizophrenia spectrum disorder and a control group of 76 healthy subjects. Subjects received detailed clinical and cognitive assessment and structural magnetic resonance imaging (MRI) at regular time points during a 3-year follow-up period. The effects of brain changes on cognitive and clinical variables were examined along with the impact of potential confounding factors. RESULTS: Overall, patients and healthy controls exhibited a similar pattern of brain volume changes. However, patients showed a significant lower progressive decrease in the volume of the caudate nucleus than control subjects (F 1,307.2 = 2.12, p = 0.035), with healthy subjects showing a greater reduction than patients during the follow-up period. Clinical and cognitive outcomes were not associated with progressive brain volume changes during the early years of the illness. CONCLUSIONS: Brain volume abnormalities that have been consistently observed at the onset of non-affective psychosis may not inevitably progress, at least over the first years of the illness. Taking together with clinical and cognitive longitudinal data, our findings, showing a lack of brain deterioration in a substantial number of individuals, suggest a less pessimistic and more reassuring perception of the illness.


Subject(s)
Brain/pathology , Disease Progression , Schizophrenia/pathology , Adult , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male
8.
Psychol Med ; 41(7): 1449-60, 2011 Jul.
Article in English | MEDLINE | ID: mdl-20942995

ABSTRACT

BACKGROUND: The thickness of the cortical mantle is a sensitive measure for identifying alterations in cortical structure. We aimed to explore whether first episode schizophrenia patients already show a significant cortical thinning and whether cortical thickness anomalies may significantly influence clinical and cognitive features. METHOD: We investigated regional changes in cortical thickness in a large and heterogeneous sample of schizophrenia spectrum patients (n=142) at their first break of the illness and healthy controls (n=83). Magnetic resonance imaging brain scans (1.5 T) were obtained and images were analyzed by using brains2. The contribution of sociodemographic, cognitive and clinical characterictics was investigated. RESULTS: Patients showed a significant total cortical thinning (F=17.55, d=-0.62, p<0.001) and there was a diffuse pattern of reduced thickness (encompassing frontal, temporal and parietal cortices) (all p's<0.001, d's>0.53). No significant group×gender interactions were observed (all p's>0.15). There were no significant associations between the clinical and pre-morbid variables and cortical thickness measurements (all r's<0.12). A weak significant negative correlation between attention and total (r=-0.24, p=0.021) and parietal cortical thickness (r=-0.27, p=0.009) was found in patients (thicker cortex was associated with lower attention). Our data revealed a similar pattern of cortical thickness changes related to age in patients and controls. CONCLUSIONS: Cortical thinning is independent of gender, age, age of onset and duration of the illness and does not seem to significantly influence clinical and functional symptomatology. These findings support a primary neurodevelopment disorder affecting the normal cerebral cortex development in schizophrenia.


Subject(s)
Cerebral Cortex/pathology , Cognition , Magnetic Resonance Imaging/methods , Schizophrenia/pathology , Adolescent , Adult , Age Factors , Analysis of Variance , Brain Mapping/methods , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Psychiatric Status Rating Scales , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...