Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Microcirculation ; 31(2): e12839, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38044795

ABSTRACT

OBJECTIVES: The objective of our study is to evaluate the involvement of the transient receptor potential vanilloid 4 (TRPV4) in the alteration of lymphatic pumping in response to flow and determine the signaling pathways involved. METHODS: We used immunofluorescence imaging and western blotting to assess TRPV4 expression in rat mesenteric lymphatic vessels. We examined inhibition of TRPV4 with HC067047, nitric oxide synthase (NOS) with L-NNA and cyclooxygenases (COXs) with indomethacin on the contractile response of pressurized lymphatic vessels to flow changes induced by a stepwise increase in pressure gradients, and the functionality of endothelial TRPV4 channels by measuring the intracellular Ca2+ response of primary lymphatic endothelial cell cultures to the selective agonist GSK1016790A. RESULTS: TRPV4 protein was expressed in both the endothelial and the smooth muscle layer of rat mesenteric lymphatics with high endothelial expression around the valve sites. When maintained under constant transmural pressure, most lymphatic vessels displayed a decrease in contraction frequency under conditions of flow and this effect was ablated through inhibition of NOS, COX or TRPV4. CONCLUSIONS: Our findings demonstrate a critical role for TRPV4 in the decrease in contraction frequency induced in lymphatic vessels by increases in flow rate via the production and action of nitric oxide and dilatory prostanoids.


Subject(s)
Lymphatic Vessels , Transient Receptor Potential Channels , Rats , Animals , TRPV Cation Channels , Transient Receptor Potential Channels/metabolism , Endothelium , Lymphatic Vessels/metabolism , Nitric Oxide/metabolism , Vasodilation
2.
Am J Physiol Cell Physiol ; 326(1): C269-C281, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38047303

ABSTRACT

Cell-cell communication within the lymphatic vasculature during homeostasis is incompletely detailed. Although many discoveries highlight the pathological roles of transforming growth factor-beta (TGFß) in chronic vascular inflammation and associated fibrosis, only a small amount is known surrounding the role of TGFß-signaling in homeostatic lymphatic function. Here, we discovered that pharmacological blockade of TGFß receptor 1 (TGFßR1) negatively impacts rat mesenteric lymphatic vessel pumping, significantly reducing vessel contractility and surrounding lymphatic muscle coverage. We have identified mesenteric lymphatic endothelial cells themselves as a source of endogenous vascular TGFß and that TGFß production is significantly increased in these cells via activation of a number of functional pattern recognition receptors they express. We show that a continuous supply of TGFß is essential to maintain the contractile phenotype of neighboring lymphatic muscle cells and support this conclusion through in vitro analysis of primary isolated lymphatic muscle cells that undergo synthetic differentiation during 2-D cell culture, a phenomenon that could be effectively rescued by supplementation with recombinant TGFß. Finally, we demonstrate that lymphatic endothelial production of TGFß is regulated, in part, by nitric oxide in a manner we propose is essential to counteract the pathological over-production of TGFß. Taken together, these data highlight the essential role of homeostatic TGFß signaling in the maintenance of lymphatic vascular function and highlight possible deleterious consequences of its inhibition.NEW & NOTEWORTHY The growth factor TGFß is commonly associated with its pathological overproduction during tissue fibrosis rather than its homeostatic functions. We expose the lymphatic endothelium as a source of endogenous TGFß, the impact of its production on the maintenance of surrounding lymphatic muscle cell phenotype, and internally regulated mechanisms of its production. Overall, these results highlight the intricate balance of TGFß-signaling as an essential component of maintaining lymphatic contractile function.


Subject(s)
Lymphatic Vessels , Transforming Growth Factor beta , Rats , Animals , Transforming Growth Factor beta/metabolism , Endothelial Cells/metabolism , Lymphatic Vessels/metabolism , Phenotype , Muscles , Fibrosis , Homeostasis
3.
Mol Ther Nucleic Acids ; 28: 935-947, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35782912

ABSTRACT

Pattern recognition receptors such as Mincle (Clec4e) play a significant role in the regulation of inflammation. Enhanced signaling of Mincle through the release of damage-associated molecular patterns during sterile inflammation has been shown to be important in the progression and manifestation of several diseases. A limitation to Mincle-targeted therapeutics is the feasibility of human-scale antibody therapy and the lack of alternative small-molecule inhibitors. Herein, we describe a highly specific neutralizing DNA aptamer targeting Mincle and demonstrate its therapeutic potential. Our data demonstrate that AptMincle selectively binds to both human and mouse Mincle with high affinity and is able to directly target and reduce Mincle activation. AptMincle can specifically reduce trehalose-6,6-dibehenate (TDB)-induced Syk and P65 phosphorylation in vitro in a manner comparable to that of the commercially available neutralizing antibody in vitro. Moreover, a bio-stable modified aptamer, AptMincleDRBL, was successful in reducing disease activity in a dextran sodium sulfate (DSS)-induced model of ulcerative colitis in a dose- and sequence-dependent manner. The results present an alternative, highly specific DNA aptamer with antagonistic function for use in the investigation of Mincle-associated diseases. The data also show the translational potential of Mincle-targeting aptamers as a new category of biologic therapy in the treatment of inflammatory bowel disease (IBD).

4.
Int J Mol Sci ; 22(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34769187

ABSTRACT

Previously published, off-target effects of statins on skeletal smooth muscle function have linked structural characteristics within this drug class to myopathic effects. However, the effect of these drugs on lymphatic vascular smooth muscle cell function, and by proxy dietary cholesterol uptake, by the intestinal lymphatic network has not been investigated. Several of the most widely prescribed statins (Atorvastatin, Pravastatin, Lovastatin, and Simvastatin) were tested for their in-situ effects on smooth muscle contractility in rat mesenteric collecting lymphatic vessels. Lovastatin and Simvastatin had a concentration-dependent effect of initially increasing vessel contraction frequency before flatlining the vessel, a phenomenon which was found to be a lactone-ring dependent phenomenon and could be ameliorated through use of Lovastatin- or Simvastatin-hydroxyacid (HA). Simvastatin treatment further resulted in mitochondrial depolymerization within primary-isolated rat lymphatic smooth muscle cells (LMCs) while Lovastatin was found to be acting in a mitochondrial-independent manner, increasing the function of RhoKinase. Lovastatin's effect on RhoKinase was investigated through pharmacological testing and in vitro analysis of increased MLC and MYPT1 phosphorylation within primary isolated LMCs. Finally, acute in vivo treatment of rats with Lovastatin, but not Lovastatin-HA, resulted in a significantly decreased dietary lipid absorption in vivo through induced disfunction of mesenteric lymph uptake and trafficking.


Subject(s)
Cholesterol, Dietary , Lovastatin/adverse effects , Lymphatic Vessels/metabolism , Mesentery/metabolism , Muscle Contraction/drug effects , Muscle, Smooth/metabolism , Prodrugs/adverse effects , Animals , Cholesterol, Dietary/pharmacokinetics , Cholesterol, Dietary/pharmacology , Lovastatin/pharmacology , Male , Prodrugs/pharmacology , Rats , Rats, Sprague-Dawley
5.
Am J Physiol Gastrointest Liver Physiol ; 314(3): G408-G417, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29351397

ABSTRACT

Inflammatory bowel disease (IBD) has a complex pathophysiology with limited treatments. Structural and functional changes in the intestinal lymphatic system have been associated with the disease, with increased risk of IBD occurrence linked to a history of acute intestinal injury. To examine the potential role of the lymphatic system in inflammation recurrence, we evaluated morphological and functional changes in mouse mucosal and mesenteric lymphatic vessels, and within the mesenteric lymph nodes during acute ileitis caused by a 7-day treatment with dextran sodium sulfate (DSS). We monitored whether the changes persisted during a 14-day recovery period and determined their potential consequences on dendritic cell (DC) trafficking between the mucosa and lymphoid tissues. DSS administration was associated with marked lymphatic abnormalities and dysfunctions exemplified by lymphangiectasia and lymphangiogenesis in the ileal mucosa and mesentery, increased mesenteric lymphatic vessel leakage, and lymphadenopathy. Lymphangiogenesis and lymphadenopathy were still evident after recovery from intestinal inflammation and correlated with higher numbers of DCs in mucosal and lymphatic tissues. Specifically, a deficit in CD103+ DCs observed during acute DSS in the lamina propria was reversed and further enhanced during recovery. We concluded that an acute intestinal insult caused alterations of the mesenteric lymphatic system, including lymphangiogenesis, which persisted after resolution of inflammation. These morphological and functional changes could compromise DC function and movement, increasing susceptibility to further gastrointestinal disease. Elucidation of the changes in mesenteric and intestinal lymphatic function should offer key insights for new therapeutic strategies in gastrointestinal disorders such as IBD. NEW & NOTEWORTHY Lymphatic integrity plays a critical role in small intestinal homeostasis. Acute intestinal insult in a mouse model of acute ileitis causes morphological and functional changes in mesenteric and intestinal lymphatic vessels. While some of the changes significantly regressed during inflammation resolution, others persisted, including lymphangiogenesis and altered dendritic cell function and movement, potentially increasing susceptibility to the recurrence of gastrointestinal inflammation.


Subject(s)
Ileitis/pathology , Ileum/pathology , Intestinal Mucosa/pathology , Lymph Nodes/pathology , Lymphangiectasis, Intestinal/pathology , Lymphangiogenesis , Lymphatic Vessels/pathology , Animals , Antigens, CD/metabolism , Cell Movement , Dendritic Cells/metabolism , Dendritic Cells/pathology , Dextran Sulfate , Disease Models, Animal , Ileitis/chemically induced , Ileitis/metabolism , Ileum/metabolism , Integrin alpha Chains/metabolism , Intestinal Mucosa/metabolism , Lymph Nodes/metabolism , Lymphangiectasis, Intestinal/chemically induced , Lymphangiectasis, Intestinal/metabolism , Lymphatic Vessels/metabolism , Male , Mice, Inbred C57BL , Time Factors
6.
Microcirculation ; 24(3)2017 04.
Article in English | MEDLINE | ID: mdl-28231612

ABSTRACT

OBJECTIVE: Mesenteric lymphatic vessel pumping, important to propel lymph and immune cells from the intestinal interstitium to the mesenteric lymph nodes, is compromised during intestinal inflammation. The objective of this study was to test the hypothesis that the pro-inflammatory cytokine TNF-α, is a significant contributor to the inflammation-induced lymphatic contractile dysfunction, and to determine its mode of action. METHODS: Contractile parameters were obtained from isolated rat mesenteric lymphatic vessels mounted on a pressure myograph after 24-hours incubation with or without TNF-α. Various inhibitors were administered, and quantitative real-time PCR, Western blotting, and immunofluorescence confocal imaging were applied to characterize the mechanisms involved in TNF-α actions. RESULTS: Vessel contraction frequency was significantly decreased after TNF-α treatment and could be restored by selective inhibition of NF-кB, iNOS, guanylate cyclase, and ATP-sensitive K+ channels. We further demonstrated that NF-кB inhibition also suppressed the significant increase in iNOS mRNA observed in TNF-α-treated lymphatic vessels and that TNF-α treatment favored the nuclear translocation of the p65 NF-κB subunit. CONCLUSIONS: These findings suggest that TNF-α decreases mesenteric lymphatic contractility by activating the NF-κB-iNOS signaling pathway. This mechanism could contribute to the alteration of lymphatic pumping reported in intestinal inflammation.


Subject(s)
Lymphatic Vessels/physiopathology , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/pharmacology , Animals , Inflammation/metabolism , Mesentery/blood supply , Muscle Contraction/drug effects , Rats
7.
J Physiol ; 592(24): 5409-27, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25326448

ABSTRACT

Lymph drainage maintains tissue fluid homeostasis and facilitates immune response. It is promoted by phasic contractions of collecting lymphatic vessels through which lymph is propelled back into the blood circulation. This rhythmic contractile activity (i.e. lymphatic pumping) increases in rate with increase in luminal pressure and relies on activation of nifedipine-sensitive voltage-dependent Ca(2+) channels (VDCCs). Despite their importance, these channels have not been characterized in lymphatic vessels. We used pressure- and wire-myography as well as intracellular microelectrode electrophysiology to characterize the pharmacological and electrophysiological properties of L-type and T-type VDCCs in rat mesenteric lymphatic vessels and evaluated their particular role in the regulation of lymphatic pumping by stretch. We complemented our study with PCR and confocal immunofluorescence imaging to investigate the expression and localization of these channels in lymphatic vessels. Our data suggest a delineating role of VDCCs in stretch-induced lymphatic vessel contractions, as the stretch-induced increase in force of lymphatic vessel contractions was significantly attenuated in the presence of L-type VDCC blockers nifedipine and diltiazem, while the stretch-induced increase in contraction frequency was significantly decreased by the T-type VDCC blockers mibefradil and nickel. The latter effect was correlated with a hyperpolarization. We propose that activation of T-type VDCCs depolarizes membrane potential, regulating the frequency of lymphatic contractions via opening of L-type VDCCs, which drive the strength of contractions.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium Channels, T-Type/metabolism , Lymphatic Vessels/metabolism , Muscle Contraction , Animals , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/genetics , Calcium Channels, T-Type/genetics , Diltiazem/pharmacology , Lymphatic Vessels/drug effects , Lymphatic Vessels/physiology , Male , Membrane Potentials , Mibefradil/pharmacology , Nickel/pharmacology , Nifedipine/pharmacology , Rats , Rats, Sprague-Dawley
8.
J Physiol ; 590(11): 2677-91, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22451438

ABSTRACT

Lymphatic vessels serve as a route by which interstitial fluid, protein and other macromolecules are returned to the blood circulation and immune cells and antigens gain access to lymph nodes. Lymph flow is an active process promoted by rhythmical contraction-relaxation events occurring in the collecting lymphatic vessels. This lymphatic pumping is an intrinsic property of the lymphatic muscles in the vessel wall and consequent to action potentials. Compromised lymphatic pumping may affect lymph and immune cell transport, an action which could be particularly detrimental during inflammation. Importantly, many inflammatory mediators alter lymphatic pumping. Vasoactive intestinal peptide (VIP) is a neuro- and immuno-modulator thought to be released by nerve terminals and immune cells in close proximity to lymphatic vessels. We demonstrated the presence of the peptide in lymphatic vessels and in the lymph and examined the effects of VIP on mesenteric collecting lymphatic vessels of the guinea pig using pharmacological bioassays, intracellular microelectrode electrophysiology, immunofluorescence and quantitative real-time PCR. We showed that VIP alters lymphatic pumping by decreasing the frequency of lymphatic contractions and hyperpolarizing the lymphatic muscle membrane potential in a concentration-dependent manner. Our data further suggest that these effects are mainly mediated by stimulation of the VIP receptor VPAC2 located on the lymphatic muscle and the downstream involvement of protein kinase A (PKA) and ATP-sensitive K⁺ (KATP) channels. Inhibition of lymphatic pumping by VIP may compromise lymph drainage, oedema resolution and immune cell trafficking to the draining lymph nodes.


Subject(s)
Lymphatic Vessels/physiology , Vasoactive Intestinal Peptide/physiology , Animals , Guinea Pigs , In Vitro Techniques , Membrane Potentials
9.
Br J Pharmacol ; 158(8): 1961-70, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19922540

ABSTRACT

BACKGROUND AND PURPOSE: Rhythmical transient constrictions of the lymphatic vessels provide the means for efficient lymph drainage and interstitial tissue fluid balance. This activity is critical during inflammation, to avoid or limit oedema resulting from increased vascular permeability, mediated by the release of various inflammatory mediators. In this study, we investigated the mechanisms by which prostaglandin E(2) (PGE(2)) and prostacyclin modulate lymphatic contractility in isolated guinea pig mesenteric lymphatic vessels. EXPERIMENTAL APPROACH: Quantitative RT-PCR was used to assess the expression of mRNA for enzymes and receptors involved in the production and action of PGE(2) and prostacyclin in mesenteric collecting lymphatic vessels. Frequency and amplitude of lymphatic vessel constriction were measured in the presence of these prostaglandins and the role of their respective EP and IP receptors assessed. KEY RESULTS: Prostaglandin E(2) and prostacyclin decreased concentration-dependently the frequency, without affecting the amplitude, of lymphatic constriction. Data obtained in the presence of the EP(4) receptor antagonists, GW627368x (1 microM) and AH23848B (30 microM) and the IP receptor antagonist CAY10441 (0.1 microM) suggest that PGE(2) predominantly activates EP(4), whereas prostacyclin mainly stimulates IP receptors. Inhibition of responses to either prostaglandin with H89 (10 microM) or glibenclamide (1 microM) suggested a role for the activation of protein kinase A and ATP-sensitive K(+) channels. CONCLUSIONS AND IMPLICATIONS: Our findings characterized the inhibition of lymphatic pumping induced by PGE(2) or prostacyclin in guinea pig mesenteric lymphatics. This action is likely to impair oedema resolution and to contribute to the pro-inflammatory actions of these prostaglandins.


Subject(s)
Dinoprostone/pharmacology , Epoprostenol/pharmacology , Receptors, Epoprostenol/drug effects , Receptors, Prostaglandin E/drug effects , Animals , Dinoprostone/administration & dosage , Dinoprostone/toxicity , Dose-Response Relationship, Drug , Edema/etiology , Edema/physiopathology , Epoprostenol/administration & dosage , Epoprostenol/toxicity , Guinea Pigs , Lymphatic Vessels/drug effects , Lymphatic Vessels/metabolism , Male , Mesentery/drug effects , Mesentery/metabolism , Muscle Contraction/drug effects , RNA, Messenger/metabolism , Receptors, Epoprostenol/metabolism , Receptors, Prostaglandin E/metabolism , Receptors, Prostaglandin E, EP4 Subtype , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...