ABSTRACT
In the Paraná River lower basin, an important agro-productive area of Argentina, crop fields and cattle breeding activities are common and may affect water quality. So, the aim of this study was to analyze the impacts of cattle breeding and agricultural activities on a stream from Buenos Aires, through physicochemical parameters (metals, pesticides, and emerging contaminants) and ecotoxicological parameters with Rhinella arenarum larvae, a native amphibian species. Three sites were selected on an ordinary plain stream that goes through agricultural fields and a cattle breeding establishment (upstream -S1-, near -S2- and downstream -S3- the establishment). Physicochemical parameters were measured in situ (in water) and in laboratory (in water and sediment samples: metals, pesticides, ivermectin and oxytetracycline). A semi-static chronic toxicity bioassay (504 h) was performed with water samples, and neurotoxicity, oxidative stress and genotoxicity biomarkers were measured after acute exposure (96 h). According to the index, a degradation in the water quality was observed in all sites. Ivermectin (8.03 mg/kg) and oxytetracycline (1.9 mg/kg) were detected in sediment samples from S2. Pesticides were detected in all sites, mainly in water samples: S1 presented the highest variability (7 residues) and in S3 AMPA, glyphosate and acetochlor concentrations were higher (10.3, 22.4 and 23.8 µg/L). Also, all sites significantly produced lethality at chronic exposure. Lethality at 504h was 40% for S1, 56.66% for S2 and 93.33% for S3. At acute exposure, the oxidative stress biomarkers were altered on R. arenarum larvae exposed to all sites and the neurotoxicity biomarkers were altered on larvae exposed to S1 and S3. Water quality was severely degraded by the surrounding agricultural and cattle breeding activities, which may represent a threat to the ecosystems.
Subject(s)
Oxytetracycline , Pesticides , Water Pollutants, Chemical , Animals , Cattle , Pesticides/analysis , Ecosystem , Ivermectin , Water Pollutants, Chemical/analysis , Metals , Amphibians/metabolism , Larva/metabolism , Biomarkers , Environmental MonitoringABSTRACT
Sediments of aquatic ecosystems constitute the fate of most atmospheric and terrestrial pollutants. Since aquatic organisms, such as amphibians, interact with sediments, the presence of pollutants may affect their survival, growth and reproduction. So, the aim of this study was to evaluate, the sediment and water quality of five sites from the lower basin of the Paraná River (Buenos Aires, Argentina) with different anthropic impacts: Morejón stream (S1), de la Cruz stream upstream (S2) and downstream (S3), Arrecifes river (S4), tributary stream of Arrecifes river (S5). Physicochemical parameters were measured in situ (water) and in laboratory (water and sediment samples). Also, a screening of metals and pesticides was performed. Chronic (504 h) lethal toxicity bioassays were performed exposing Rhinella arenarum larvae to sediment and water samples. Oxidative stress (catalase, superoxide dismutase, glutathione S transferase, reduced glutathione and lipid peroxidation) and genotoxicity (micronuclei test) biomarkers were analyzed at acute (96 h) exposure. According to the calculated water quality index, S1 and S3 showed excellent quality, S2 good quality and, S4 and S5 poor quality. Dissolved oxygen was low in all sites (2.26-5.63 mg/L) and S5 had the highest organic matter content. Copper levels exceeded the limit for the protection of aquatic life in S2 and S4; arsenic levels exceeded its limit in S4; and selenium levels exceeded its limit in S4 and S5. Pesticides were mainly detected in water samples. Sediment from S5 showed higher sulfide and organic matter concentrations. At 504 h, no significant mortality was observed in the control group while S5 caused the greatest mortality (80%), followed by S2 (66.67%), S1 (63.33%), S3 (46.67%) and S4 (43.4%). All samples caused oxidative stress and lipid peroxidation, and samples from S4 also caused genotoxicity. The analysis of sediment and water samples was a suitable approach to assess the effects of water bodies on a native amphibian species.
Subject(s)
Pesticides , Water Pollutants, Chemical , Ecosystem , Ecotoxicology , Environmental Monitoring , Geologic Sediments/chemistry , Pesticides/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicityABSTRACT
The objective of this study was to evaluate the occurrence of pesticides in surface and groundwater of agricultural areas of the Pampas region of Argentina and to develop an ecological risk assessment (ERA) of pesticides in freshwater ecosystems. Eight agricultural sites from south Santa Fe province, in the north of the Pampas region, were sampled seven times between 2016 and 2018. Pesticides were analysed by gas chromatography-mass spectrometry (GC/MS) and liquid chromatography-mass spectrometry (UPLC-LC/MS). Twenty compounds among herbicides, insecticides and fungicides in 84% and 79% of groundwater and surface water samples, respectively, were detected. Atrazine was the most ubiquitous pesticide, following by metolachlor, acetochlor and glyphosate, with maximum concentrations of 28, 24, 77 and 111 µg/L, respectively. An ERA was performed by employing the risk quotient (RQ) method. Atrazine, azoxystrobin, pirimiphos-methyl, acetochlor and epoxiconazole posed a high and very high risk for aquatic organisms (RQ > 1) and glyphosate, metolachlor and 2,4-D exhibited negligible to medium risk. The herbicides were the major contributors to risk. This study is the first contribution on the presence and concentration of pesticides in surface and groundwater from agricultural areas of south Santa Fe province, north Pampas region, Argentina, and a starting point for pesticide ecological risk assessment.
Subject(s)
Groundwater , Pesticides , Water Pollutants, Chemical , Argentina , Ecosystem , Environmental Monitoring , Pesticides/analysis , Risk Assessment , Water Pollutants, Chemical/analysisABSTRACT
Traditionally, water quality was assessed by physicochemical parameters. However, a more comprehensive analysis is needed to study the effects of polluted water bodies on key species over time. So, the aim of this study was to monitor through physicochemical and ecotoxicological indicators the surface water quality of four study sites with different land uses from the lower Paraná river basin (Argentina) during spring and summer of two years: Morejón stream (S1), De la Cruz stream upstream (S2), downstream (S3) and Arrecifes river (S4). Physicochemical parameters were measured in situ and in laboratory, and a Water Quality Index (WQI) was calculated. Chronic toxicity bioassays were performed with surface water samples using Rhinella arenarum embryos and larvae. Also, oxidative stress (catalase, superoxide dismutase, glutathione S-transferase, reduced glutathione and lipid peroxidation), neurotoxicity (butyrylcholinesterase) and genotoxicity (micronuclei frequency) biomarkers were measured at acute exposure, and an Integrated Biomarkers Response (IBR) index was calculated. The water quality varied between excellent and bad in S1, good and bad in S2 and S3, and bad and marginal in S4. S1 presented the greatest variability of pesticides and S4 the highest number of metals exceeding the limits for the local protection of aquatic life. Mainly, S4 caused lethality in R. arenarum larvae, reaching a maximum mortality of 83.3% at 504 h of exposure. The lethal toxicity of S1 and S2 varied between periods. Water samples from all sites altered the oxidative stress, neurotoxicity and genotoxicity biomarkers, and the IBR was negatively correlated with the WQI. The IBR reflected the effects of the degraded water quality on the exposed organisms. So, the importance of evaluating both physicochemical and ecotoxicological parameters to analyze integrally the water quality of polluted areas is highlighted. A degradation of the studied water bodies and its negative impact to the native amphibian R. arenarum were observed.
Subject(s)
Water Pollutants, Chemical , Water Quality , Butyrylcholinesterase , Catalase , Ecotoxicology , Environmental Monitoring , Rivers , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicityABSTRACT
Agricultural expansion and intensification has led globally to a rapid landscape structure change and high agrochemical use resulting in habitat loss and degraded environmental quality. Co-occurrence of landscape change and agrochemical contamination threatens biodiversity and might have interactive effects especially for organisms with complex life-cycles such as amphibians. We evaluated effects of landscape structure and agrochemical contamination at different spatial scales on anurans in Entre Rios, Argentina. We selected 35 independent stream headwaters along an agricultural expansion and intensification gradient. We conducted anuran call surveys from spring 2012 to summer 2013 and obtained detection-non detection data to estimate mean richness and focal species occupancy. We quantified forest area and riparian forest width at two spatial scales (sub-basin and local reach scale). We measured nutrients and pesticides in water and sediment. We evaluated anuran response to landscape and contamination variables using GLMs for richness and single season single-species occupancy models for focal species. Anuran diversity increased with forest area and riparian forest width, and decreased at sites with herbicide and nutrient contamination, particularly glyphosate; 2,4-D and nitrates. Also, most focal frog species responded mainly to basin forest and 2,4-D. Negative effects of agrochemical contamination on anuran diversity was mitigated in areas with larger basin forest cover. Agricultural management should ensure the reduction of herbicide and fertilizer use, the sparing of adequate forested habitat within drainage areas, and preservation of riparian forests around anuran breeding habitat to reduce and mitigate the negative effects of agrochemical contamination on anurans diversity in agroecosystems.
Subject(s)
Agrochemicals , Forests , Agrochemicals/toxicity , Animals , Anura , Argentina , Biodiversity , EcosystemABSTRACT
Aspergillus flavus is a filamentous, saprophytic fungus, whose colonization occurs mainly in cereal grains and oilseeds once harvested. Under certain conditions, it could produce mycotoxins called aflatoxins, known as powerful human liver carcinogens. The aim of the present study was to describe the antifungal activity of extracts of Peltophorum dubium, a species from northern Argentina (Oriental Chaco), against A. flavus. The antifungal activities of different collection sites are reported. The extracts exhibited a minimum inhibitory concentration of 125 µg/mL, and the differences between the treatments and the inoculum control were 11 mm of P. dubium A and 10 mm of P. dubium F in colony growth. Moreover, hyphae treated with the extracts stained blue with Evans blue showed alterations in the membrane and/or cell wall, allowing the dye income. Bio-guided fractionation, High Performance Liquid Chromatography diode array ultraviolet/visible (HPLC UV/VIS DAD), and Ultra-High Performance Liquid Chromatography Electrospray Ionization Mass Spectrometry (UPLC ESI-MS) analyses were conducted to characterize the extracts and their active fractions. The HPLC UV/VIS DAD analysis allowed the determination of the presence of flavonoids (flavonols and flavones), coumarins, terpenes, and steroids. UPLC ESI/MS analysis of active fractions revealed the presence of Kaempferol, Apigenin, Naringenin, Chrysin and Daidzein.
ABSTRACT
The Paraná River basin is one of the most important in South America and is affected by human activities that take place on its margins. In particular, the De la Cruz stream flows through an industrial pole and the Arrecifes River goes mainly through agricultural fields. The aim of this study was to evaluate the water quality of the De la Cruz stream (S1) and the Arrecifes River (S2) by means of physicochemical parameters, including metals and pesticides concentrations. Since amphibians are good indicators of environmental quality, bioassays with Rhinella arenarum were carried on. For lethal and sublethal parameters, embryos and larvae were exposed to a dilution gradient of water samples and AMPHITOX Solution (AS) as negative control for 504 h. For the determination of oxidative stress biomarkers (Catalase -CAT-, Glutathione S-Transferase -GST-, Reduced Glutathione -GSH-, and lipid peroxidation -TBARS-), embryos and larvae were exposed to undiluted water samples and AS. For the determination of micronuclei, larvae at hind limb bud stage (S.28) were exposed to undiluted water samples, simultaneously with negative and positive controls (AS and cyclophosphamide 40 mg/L, respectively). Dissolved oxygen was low in both sites and the copper levels exceeded the Argentine limit for the protection of aquatic life. In embryos exposure, water sample from S1 caused lethal effects (504h-LC50 = 49 (28-71.6)%), increased TBARS levels, and GST and CAT activities. In larvae exposure, water sample from this site decreased CAT activity, while the water sample from S2 caused important lethal effects (504h-LC50 = 98.72 (60.60-302.52)%), low GSH levels and increased GST activity. Water samples from both sites induced higher micronuclei frequency than the negative control. This study alerts about the degradation of water quality of the studied sites including lethal and sublethal effects in R. arenarum that can jeopardize the native populations of this species.
Subject(s)
Rivers , Water Pollutants, Chemical , Animals , Biomarkers , Catalase , Environmental Biomarkers , Glutathione Transferase , Oxidative Stress , South America , Thiobarbituric Acid Reactive SubstancesABSTRACT
The aim of this study was to characterize the level and nature of the pesticide contamination received by one-sided livebearer fish (Jenynsia multidentata) from a watercourse situated within the main agricultural region of Argentina, and to assess the effects of this contamination on fish health. Juvenile one-sided livebearer fish (Jenynsia multidentata) were collected in December 2011 and March 2012 from three sites along the Pergamino River. Pesticide contamination was characterized by extracting whole fish and analytically determining thirty different pesticide molecules. The biomarkers catalase, glutathione-S-transferase, and cholinesterases were assessed. Body condition was calculated as an estimate of the amount of energy reserves possessed by the fish. Seventeen different pesticides were detected in fish tissues with 81% of captured animals containing at least one pesticide molecule. The pyrethroid insecticides fenvalerate and bifenthrin were most frequently detected, being respectively found in 41.8 and 36.4% of samples tested. Highly toxic dichlorvos and pirimiphos-methyl were detected. Differential levels of contamination could not be established amongst sites but were observed within sites amongst the two sampling dates. The months when pesticide residues were most abundant from in Site A and B corresponded to the months when body condition was at its lowest in the two sites. The inhibition of Che activity in March when body condition was reduced also points to a role of insecticide contamination in the reduction of body condition. These findings provide strong new evidence that current-used agricultural pesticides can accumulate in wild fish and impact their health and energetics.