Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 12(2): e0129322, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36719208

ABSTRACT

This study presents a draft genome sequence of a Newcastle disease virus (NDV) strain (VFAR-136) isolated from a fighting cock (Gallus gallus) in the south of Peru. Strain VFAR-136 is a new report of NDV genotype VII circulating in Peru.

2.
Sci Rep ; 12(1): 10359, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35725862

ABSTRACT

The coronavirus disease-19 (COVID-19) pandemic has already claimed millions of lives and remains one of the major catastrophes in the recorded history. While mitigation and control strategies provide short term solutions, vaccines play critical roles in long term control of the disease. Recent emergence of potentially vaccine-resistant and novel variants necessitated testing and deployment of novel technologies that are safe, effective, stable, easy to administer, and inexpensive to produce. Here we developed three recombinant Newcastle disease virus (rNDV) vectored vaccines and assessed their immunogenicity, safety, and protective efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in mice and hamsters. Intranasal administration of rNDV-based vaccine candidates elicited high levels of neutralizing antibodies. Importantly, the nasally administrated vaccine prevented lung damage, and significantly reduced viral load in the respiratory tract of vaccinated animal which was compounded by profound humoral immune responses. Taken together, the presented NDV-based vaccine candidates fully protected animals against SARS-CoV-2 challenge and warrants evaluation in a Phase I human clinical trial as a promising tool in the fight against COVID-19.


Subject(s)
COVID-19 , Viral Vaccines , Administration, Intranasal , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Cricetinae , Mice , Newcastle disease virus/genetics , SARS-CoV-2/genetics , Vaccination , Vaccines, Synthetic/genetics
3.
Viruses ; 14(4)2022 04 11.
Article in English | MEDLINE | ID: mdl-35458523

ABSTRACT

In this study, we developed a new recombinant virus rHVT-F using a Turkey herpesvirus (HVT) vector, expressing the fusion (F) protein of the genotype XII Newcastle disease virus (NDV) circulating in Peru. We evaluated the viral shedding and efficacy against the NDV genotype XII challenge in specific pathogen-free (SPF) chickens. The F protein expression cassette was inserted in the unique long (UL) UL45-UL46 intergenic locus of the HVT genome by utilizing a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 gene-editing technology via a non-homologous end joining (NHEJ) repair pathway. The rHVT-F virus, which expressed the F protein stably in vitro and in vivo, showed similar growth kinetics to the wild-type HVT (wtHVT) virus. The F protein expression of the rHVT-F virus was detected by an indirect immunofluorescence assay (IFA), Western blotting, and a flow cytometry assay. The presence of an NDV-specific IgY antibody was detected in serum samples by an enzyme-linked immunosorbent assay (ELISA) in SPF chickens vaccinated with the rHVT-F virus. In the challenge experiment, the rHVT-F vaccine fully protects a high, and significantly reduced, virus shedding in oral at 5 days post-challenge (dpc). In conclusion, this new rHVT-F vaccine candidate is capable of fully protecting SPF chickens against the genotype XII challenge.


Subject(s)
Herpesvirus 2, Gallid , Newcastle Disease , Poultry Diseases , Viral Vaccines , Animals , Antibodies, Viral , CRISPR-Cas Systems , Chickens , Genotype , Herpesvirus 1, Meleagrid/genetics , Integrases , Newcastle Disease/prevention & control , Newcastle disease virus/genetics , Vaccines, Synthetic/genetics , Viral Vaccines/genetics
4.
PLoS One ; 14(8): e0219475, 2019.
Article in English | MEDLINE | ID: mdl-31433806

ABSTRACT

Glycoprotein G (gG) is a conserved protein, and it has been described as a chemokine-binding protein in most members of the alphaherpesviruses. In case of the infectious laryngotracheitis virus (ILTV), an alphaherpesvirus that infects chickens, this protein is a virulence factor that plays an immunomodulatory role in the chicken immune response. Nevertheless, the gG production profile during ILTV infection has not yet been studied. In this study, we developed monoclonal antibodies in order to determine the gG production profile during ILTV infection in chicken hepatocellular carcinoma (LMH) cell cultures as well as embryonated specific-pathogen-free (SPF) chicken eggs and SPF chickens using a sandwich enzyme-linked immunosorbent assay (ELISA). Despite the fact that inoculated LMH cell cultures showed an increase in both gG production and viral genome copy number up to 96 h after inoculation, we observed that gG production started earlier than the increase in viral genome copy number in ILTV infected embryonated SPF chicken eggs. Likewise, a gG production peak and an increase of viral genome copy number was observed prior to the appearance of clinical signs in infected SPF chickens. According to the production profiles, gG was also produced quite early in eggs and chickens inoculated with ILTV. These findings contribute to the knowledge of the gG role during the ILTV infection as a virulence factor.


Subject(s)
Herpesviridae Infections/metabolism , Herpesvirus 1, Gallid/physiology , Viral Envelope Proteins/biosynthesis , Animals , Antibodies, Monoclonal/immunology , Baculoviridae/genetics , Chickens/virology , Genome, Viral/genetics , Herpesvirus 1, Gallid/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sf9 Cells , Spodoptera , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...