Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(7): e24419, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38601544

ABSTRACT

Background: As the COVID-19 pandemic persists, infections continue to surge globally. Presently, the most effective strategies to curb the disease and prevent outbreaks involve fostering immunity, promptly identifying positive cases, and ensuring their timely isolation. Notably, there are instances where the SARS-CoV-2 virus remains infectious even after patients have completed their quarantine. Objective: Understanding viral persistence post-quarantine is crucial as it could account for localized infection outbreaks. Therefore, studying and documenting such instances is vital for shaping future public health policies. Design: This study delves into a unique case of SARS-CoV-2 persistence in a 60-year-old female healthcare worker with a medical history of hypertension and hypothyroidism. The research spans 55 days, marking the duration between her initial and subsequent diagnosis during Chile's first COVID-19 wave, with the analysis conducted using RT-qPCR. Results: Genomic sequencing-based phylogenetic analysis revealed that the SARS-CoV-2 detected in both Nasopharyngeal swab samples (NPSs) was consistent with the 20B clade of the Nextstrain classification, even after a 55-day interval. Conclusion: This research underscores the need for heightened vigilance concerning cases of viral persistence. Such instances, albeit rare, might be pivotal in understanding sporadic infection outbreaks that occur post-quarantine.

2.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37513872

ABSTRACT

Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder without a cure, despite the enormous number of investigations and therapeutic approaches. AD is a consequence of microglial responses to "damage signals", such as aggregated tau oligomers, which trigger a neuro-inflammatory reaction, promoting the misfolding of cytoskeleton structure. Since AD is the most prevalent cause of dementia in the elderly (>60 years old), new treatments are essential to improve the well-being of affected subjects. The pharmaceutical industry has not developed new drugs with efficacy for controlling AD. In this context, major attention has been given to nutraceuticals and novel bioactive compounds, such as molecules from the Andean Shilajit (AnSh), obtained from the Andes of Chile. Primary cultures of rat hippocampal neurons and mouse neuroblastoma cells were evaluated to examine the functional and neuroprotective role of different AnSh fractions. Our findings show that AnSh fractions increase the number and length of neuronal processes at a differential dose. All fractions were viable in neurons. The AnSh fractions inhibit tau self-aggregation after 10 days of treatment. Finally, we identified two candidate molecules in M3 fractions assayed by UPLC/MS. Our research points to a novel AnSh-derived fraction that is helpful in AD. Intensive work toward elucidation of the molecular mechanisms is being carried out. AnSh is an alternative for AD treatment or as a coadjuvant for an effective treatment.

3.
Front Pharmacol ; 14: 1161850, 2023.
Article in English | MEDLINE | ID: mdl-37361208

ABSTRACT

Alzheimer's disease (AD) is the most common form of neurodegenerative disease and disability in the elderly; it is estimated to account for 60%-70% of all cases of dementia worldwide. The most relevant mechanistic hypothesis to explain AD symptoms is neurotoxicity induced by aggregated amyloid-ß peptide (Aß) and misfolded tau protein. These molecular entities are seemingly insufficient to explain AD as a multifactorial disease characterized by synaptic dysfunction, cognitive decline, psychotic symptoms, chronic inflammatory environment within the central nervous system (CNS), activated microglial cells, and dysfunctional gut microbiota. The discovery that AD is a neuroinflammatory disease linked to innate immunity phenomena started in the early nineties by several authors, including the ICC´s group that described, in 2004, the role IL-6 in AD-type phosphorylation of tau protein in deregulating the cdk5/p35 pathway. The "Theory of Neuroimmunomodulation", published in 2008, proposed the onset and progression of degenerative diseases as a multi-component "damage signals" phenomena, suggesting the feasibility of "multitarget" therapies in AD. This theory explains in detail the cascade of molecular events stemming from microglial disorder through the overactivation of the Cdk5/p35 pathway. All these knowledge have led to the rational search for inflammatory druggable targets against AD. The accumulated evidence on increased levels of inflammatory markers in the cerebrospinal fluid (CSF) of AD patients, along with reports describing CNS alterations caused by senescent immune cells in neuro-degenerative diseases, set out a conceptual framework in which the neuroinflammation hypothesis is being challenged from different angles towards developing new therapies against AD. The current evidence points to controversial findings in the search for therapeutic candidates to treat neuroinflammation in AD. In this article, we discuss a neuroimmune-modulatory perspective for pharmacological exploration of molecular targets against AD, as well as potential deleterious effects of modifying neuroinflammation in the brain parenchyma. We specifically focus on the role of B and T cells, immuno-senescence, the brain lymphatic system (BLS), gut-brain axis alterations, and dysfunctional interactions between neurons, microglia and astrocytes. We also outline a rational framework for identifying "druggable" targets for multi-mechanistic small molecules with therapeutic potential against AD.

4.
J Environ Public Health ; 2022: 3859071, 2022.
Article in English | MEDLINE | ID: mdl-35528635

ABSTRACT

The identification and tracking of SARS-CoV-2 infected patients in the general population are essential components of the global strategy to limit the COVID-19 viral spread, specifically for maintaining traceability and suppressing the resurgence of local outbreaks. Public health programs that include continuous RT-qPCR testing for COVID-19 in the general population, viral sequencing, and genomic surveillance for highly contagious forms of the virus have allowed for the identification of SARS-CoV-2 infections and reinfections. This work identified SARS-CoV-2 reinfection in a homeless person, which occurred 58 days after the first COVID-19 diagnosis. Genomic sequencing identified a different Nextstrain classification clade (20A and 20B) and PANGO lineage, with a divergence of 4 single nucleotide variants (SNVs) in S and ORF1ab genes, suggesting reinfection by different viral variants. This study is the first from the great metropolitan area of Santiago, Chile, one of the top ten countries in the world to live during the COVID-19 pandemic. We support the importance of performing intensive genomic surveillance programs in the whole population and high-risk groups, such as homeless people, nearly 20 thousand people in Chile, and have limited access to health care services and poor viral traceability.


Subject(s)
COVID-19 , Ill-Housed Persons , COVID-19/epidemiology , COVID-19 Testing , Chile/epidemiology , Humans , Pandemics , Reinfection , SARS-CoV-2/genetics
5.
iScience ; 24(12): 103520, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34950860

ABSTRACT

T cell activation requires the processing and presentation of antigenic peptides in the context of a major histocompatibility complex (MHC complex). Cross-dressing is a non-conventional antigen presentation mechanism, involving the transfer of preformed peptide/MHC complexes from whole cells, such as apoptotic cells (ACs) to the cell membrane of professional antigen-presenting cells (APCs), such as dendritic cells (DCs). This is an essential mechanism for the induction of immune response against viral antigens, tumors, and graft rejection, which until now has not been clarified. Here we show for first time that the P2X7 receptor (P2X7R) is crucial to induce cross-dressing between ACs and Bone-Marrow DCs (BMDCs). In controlled ex vivo assays, we found that the P2X7R in both ACs and BMDCs is required to induce membrane and fully functional peptide/MHC complex transfer to BMDCs. These findings show that acquisition of ACs-derived preformed antigen/MHC-I complexes by BMDCs requires P2X7R expression.

6.
Molecules ; 26(20)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34684731

ABSTRACT

Type 2 diabetes and obesity are major problems worldwide and dietary polyphenols have shown efficacy to ameliorate signs of these diseases. Anthocyanins from berries display potent antioxidants and protect against weight gain and insulin resistance in different models of diet-induced metabolic syndrome. Olanzapine is known to induce an accelerated form of metabolic syndrome. Due to the aforementioned, we evaluated whether delphinidin-3,5-O-diglucoside (DG) and delphinidin-3-O-sambubioside-5-O-glucoside (DS), two potent antidiabetic anthocyanins isolated from Aristotelia chilensis fruit, could prevent olanzapine-induced steatosis and insulin resistance in liver and skeletal muscle cells, respectively. HepG2 liver cells and L6 skeletal muscle cells were co-incubated with DG 50 µg/mL or DS 50 µg/mL plus olanzapine 50 µg/mL. Lipid accumulation was determined in HepG2 cells while the expression of p-Akt as a key regulator of the insulin-activated signaling pathways, mitochondrial function, and glucose uptake was assessed in L6 cells. DS and DG prevented olanzapine-induced lipid accumulation in liver cells. However, insulin signaling impairment induced by olanzapine in L6 cells was not rescued by DS and DG. Thus, anthocyanins modulate lipid metabolism, which is a relevant factor in hepatic tissue, but do not significantly influence skeletal muscle, where a potent antioxidant effect of olanzapine was found.


Subject(s)
Anthocyanins/pharmacology , Elaeocarpaceae/metabolism , Glucosides/pharmacology , Anthocyanins/chemistry , Anthocyanins/metabolism , Diabetes Mellitus, Type 2/metabolism , Fatty Liver/metabolism , Glucosides/chemistry , Hep G2 Cells , Hepatocytes/metabolism , Humans , Hypoglycemic Agents/pharmacology , Insulin/metabolism , Insulin Resistance/physiology , Lipid Metabolism , Lipids/pharmacology , Liver/drug effects , Liver/pathology , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Obesity/metabolism , Olanzapine , Plant Extracts/pharmacology , Polyphenols/pharmacology
7.
Biomed Res Int ; 2021: 6626851, 2021.
Article in English | MEDLINE | ID: mdl-33623783

ABSTRACT

Active immunotherapy against cancer is based on immune system stimulation, triggering efficient and long-lasting antigen-specific immune responses. Immunization strategies using whole dead cells from tumor tissue, containing specific antigens inside, have become a promising approach, providing efficient lymphocyte activation through dendritic cells (DCs). In this work, we generate whole dead tumor cells from CT26, E.G7, and EL4 live tumor cells as antigen sources, which termed immunogenic cell bodies (ICBs), generated by a simple and cost-efficient starvation-protocol, in order to determine whether are capable of inducing a transversal anticancer response regardless of the tumor type, in a similar way to what we describe previously with B16 melanoma. We evaluated the anticancer effects of immunization with doses of ICBs in syngeneic murine tumor models. Our results showed that mice's immunization with ICBs-E.G7 and ICBs-CT26 generate 18% and 25% of tumor-free animals, respectively. On the other hand, all carrying tumor-animals and immunized with ICBs, including ICBs-EL4, showed a significant delay in their growth compared to not immunized animals. These effects relate to DCs maturation, cytokine production, increase in CD4+T-bet+ and CD4+ROR-γt+ population, and decrease of T regulatory lymphocytes in the spleen. Altogether, our data suggest that whole dead tumor cell-based cancer immunotherapy generated by a simple starvation protocol is a promising way to develop complementary, innovative, and affordable antitumor therapies in a broad spectrum of tumors.


Subject(s)
Antigens, Neoplasm , Colonic Neoplasms/immunology , Immunotherapy , Lymphoma/immunology , Tumor Cells, Cultured/immunology , Animals , Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism , Autophagy , Cell Culture Techniques , Cytokines/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Spleen/cytology
8.
Immunotherapy ; 13(4): 309-326, 2021 03.
Article in English | MEDLINE | ID: mdl-33397152

ABSTRACT

Aim: Whole dead tumor cells can be used as antigen source and the induction of protective immune response could be enhanced by damage-associated molecular patterns. Materials & methods: We generated whole dead tumor cells called B16-immunogenic cell bodies (ICBs) from B16 melanoma cells by nutrient starvation and evaluated the in vivo antitumor effect of B16-ICBs plus ATP and polymyxin B (PMB). Results: The subcutaneous immunization with B16-ICBs + PMB + ATP a 50% of tumor-free animals and induced a significant delay in tumor growth in a prophylactic approach. These results correlated with maturation of bone marrow-derived dendritic cells and activation of T CD8+ lymphocytes in vitro. Conclusion: Altogether, ICB + ATP + PMB is efficient in inducing the antitumor efficacy of the whole dead tumor cells vaccine.


Subject(s)
Adenosine Triphosphate/immunology , Cancer Vaccines/immunology , Melanoma, Experimental/immunology , Polymyxin B/immunology , Adenosine Triphosphate/administration & dosage , Alarmins/administration & dosage , Alarmins/immunology , Animals , Antigen Presentation , Antigens, Neoplasm/immunology , CD40 Antigens/metabolism , Cancer Vaccines/administration & dosage , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Immunization , Melanoma, Experimental/pathology , Melanoma, Experimental/prevention & control , Mice , Mice, Inbred C57BL , Phagocytosis , Polymyxin B/administration & dosage , Spleen/immunology , Tumor Cells, Cultured
9.
J Alzheimers Dis ; 77(1): 33-51, 2020.
Article in English | MEDLINE | ID: mdl-32651325

ABSTRACT

One of the major challenges of medical sciences has been finding a reliable compound for the pharmacological treatment of Alzheimer's disease (AD). As most of the drugs directed to a variety of targets have failed in finding a medical solution, natural products from Ayurvedic medicine or nutraceutical compounds emerge as a viable preventive therapeutics' pathway. Considering that AD is a multifactorial disease, nutraceutical compounds offer the advantage of a multitarget approach, tagging different molecular sites in the human brain, as compared with the single-target activity of most of the drugs used for AD treatment. We review in-depth important medicinal plants that have been already investigated for therapeutic uses against AD, focusing on a diversity of pharmacological actions. These targets include inhibition of acetylcholinesterase, ß-amyloid senile plaques, oxidation products, inflammatory pathways, specific brain receptors, etc., and pharmacological actions so diverse as anti-inflammatory, memory enhancement, nootropic effects, glutamate excitotoxicity, anti-depressants, and antioxidants. In addition, we also discuss the activity of nutraceutical compounds and phytopharmaceuticals formulae, mainly directed to tau protein aggregates mechanisms of action. These include compounds such as curcumin, resveratrol, epigallocatechin-3-gallate, morin, delphinidins, quercetin, luteolin, oleocanthal, and meganatural-az and other phytochemicals such as huperzine A, limonoids, azaphilones, and aged garlic extract. Finally, we revise the nutraceutical formulae BrainUp-10 composed of Andean shilajit and B-complex vitamins, with memory enhancement activity and the control of neuropsychiatric distress in AD patients. This integrated view on nutraceutical opens a new pathway for future investigations and clinical trials that are likely to render some results based on medical evidence.


Subject(s)
Alzheimer Disease/diet therapy , Alzheimer Disease/prevention & control , Dietary Supplements , Phytochemicals/therapeutic use , Alzheimer Disease/metabolism , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Humans , Neurofibrillary Tangles/drug effects , Neurofibrillary Tangles/metabolism , Phytochemicals/pharmacology , Treatment Outcome
10.
Biomed Res Int ; 2020: 4045760, 2020.
Article in English | MEDLINE | ID: mdl-32626742

ABSTRACT

Reovirus is known to have an anticancer effect in both the preclinical and clinical assays. Current evidence suggests that the reovirus-mediated impact on tumor growth depends on the activation of specific antitumor immune responses. A feasible explanation for the oncolytic effects and immune system activation is through the expression of the fusogenic reovirus protein. In this work, we evaluated the in vivo antitumor effects of the expression of fusogenic protein p10 of avian reovirus (ARV-p10). We used chitosan nanoparticles (CH-NPs) as a vehicle for the ARV-p10 DNA in murine B16 melanoma models both in vitro and in vivo. We confirmed that ARV-p10 delivery through a chitosan-based formulation (ARV-p10 CH-NPs) was capable of inducing cell fusion in cultured melanoma cells, showing a mild cytotoxic effect. Interestingly, intratumor injection of ARV-p10 CH-NPs delayed tumor growth, without changing lymphoid populations in the tumor tissue and spleen. The injection of chitosan nanoparticles (CH-NPs) also delayed tumor growth, suggesting the nanoparticle itself would attack tumor cells. In conclusion, we proved that in vitro ARV-p10 protein expression using CH-NPs in murine melanoma cells induces a cytotoxic effect associated with its cell fusion. Further studies are necessary for establishing a protocol for efficient in vivo DNA delivery of fusion proteins to produce an antitumoral effect.


Subject(s)
Cancer Vaccines , Melanoma, Experimental , Orthoreovirus, Avian , Recombinant Fusion Proteins , Viral Proteins , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cancer Vaccines/chemistry , Cancer Vaccines/genetics , Cancer Vaccines/pharmacology , Cell Survival/drug effects , Chitosan/chemistry , Drug Delivery Systems/methods , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Orthoreovirus, Avian/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Transfection , Viral Proteins/chemistry , Viral Proteins/genetics
11.
Mediators Inflamm ; 2020: 8680692, 2020.
Article in English | MEDLINE | ID: mdl-32410869

ABSTRACT

Oncolytic virus therapy has been tested against cancer in preclinical models and clinical assays. Current evidence shows that viruses induce cytopathic effects associated with fusogenic protein-mediated syncytium formation and immunogenic cell death of eukaryotic cells. We have previously demonstrated that tumor cell bodies generated from cells expressing the fusogenic protein of the infectious salmon anemia virus (ISAV-F) enhance crosspriming and display prophylactic antitumor activity against melanoma tumors. In this work, we evaluated the effects of the expression of ISAV-F on the B16 melanoma model, both in vitro and in vivo, using chitosan nanoparticles as transfection vehicle. We confirmed that the transfection of B16 tumor cells with chitosan nanoparticles (NP-ISAV) allows the expression of a fusogenically active ISAV-F protein and decreases cell viability because of syncytium formation in vitro. However, the in vivo transfection induces a delay in tumor growth, without inducing changes on the lymphoid populations in the tumor and the spleen. Altogether, our observations show that expression of ISAV fusion protein using chitosan nanoparticles induces cell fusion in melanoma cells and slight antitumor response.


Subject(s)
Antineoplastic Agents/pharmacology , Chitosan/chemistry , Melanoma/drug therapy , Nanoparticles/chemistry , Oncolytic Virotherapy/methods , Skin Neoplasms/drug therapy , Animals , Cell Line, Tumor , Cell Survival , Chitosan/metabolism , DNA, Complementary/metabolism , Giant Cells/metabolism , Humans , Isavirus/genetics , Lymphocytes/cytology , Melanoma, Experimental , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nanomedicine/methods , Orthomyxoviridae Infections/genetics , Recombinant Fusion Proteins/chemistry , Surface Properties , Transfection
12.
J Alzheimers Dis ; 75(4): 1219-1227, 2020.
Article in English | MEDLINE | ID: mdl-32390631

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a multifactorial disease, that involves neuroinflammatory processes in which microglial cells respond to "damage signals". The latter includes oligomeric tau, iron, oxidative free radicals, and other molecules that promotes neuroinflammation in the brain, promoting neuronal death and cognitive impairment. Since AD is the first cause of dementia in the elderly, and its pharmacotherapy has limited efficacy, novel treatments are critical to improve the quality of life of AD patients. Multitarget therapy based on nutraceuticals has been proposed as a promising intervention based on evidence from clinical trials. Several studies have shown that epicatechin-derived polyphenols from tea improve cognitive performance; also, the polyphenol molecule N-acetylcysteine (NAC) promotes neuroprotection. OBJECTIVE: To develop an approach for a rational design of leading compounds against AD, based on specific semisynthetic epicatechin and catechin derivatives. METHODS: We evaluated tau aggregation in vitro and neuritogenesis by confocal microscopy in mouse neuroblastoma cells (N2a), after exposing cells to either epicatechin-pyrogallol (EPIC-PYR), catechin-pyrogallol (CAT-PYR), catechin-phloroglucinol (CAT-PhG), and NAC. RESULTS: We found that EPIC-PYR, CAT-PYR, and CAT-PhG inhibit human tau aggregation and significantly increase neuritogenesis in a dose-dependent manner. Interestingly, modification with a phloroglucinol group yielded the most potent molecule of those evaluated, suggesting that the phloroglucinol group may enhance neuroprotective activity of the catechin-derived compounds. Also, as observed with cathechins, NAC promotes neuritogenesis and inhibits tau self-aggregation, possibly through a different pathway. CONCLUSION: EPIC-PYR, CAT-PYR, CAT-PhG, and NAC increased the number of neurites in Na2 cell line and inhibits tau-self aggregation in vitro.


Subject(s)
Alzheimer Disease/drug therapy , Catechin/administration & dosage , Cysteine/administration & dosage , Neurons/drug effects , Neurons/metabolism , Polyphenols/administration & dosage , Alzheimer Disease/metabolism , Animals , Cell Line, Tumor , Drug Discovery , Mice , tau Proteins/metabolism
13.
Front Pharmacol ; 11: 429, 2020.
Article in English | MEDLINE | ID: mdl-32390830

ABSTRACT

A growing body of research indicates that cortisol, the glucocorticoid product of the activation of the hypothalamic-pituitary-adrenal axis, plays a role in the pathophysiology of metabolic syndrome. In this regard, chronic exposure to cortisol is associated with risk factors related to metabolic syndrome like weight gain, type 2 diabetes, hypertension, among others. Mifepristone is the only FDA-approved drug with antiglucocorticoids properties for improved the glycemic control in patients with type 2 patients secondary to endogenous Cushing's syndrome. Mifepristone also have been shown positive effects in rodents models of diabetes and patients with obesity due to antipsychotic treatment. However, the underlying molecular mechanisms are not fully understood. In this perspective, we summarized the literature regarding the beneficial effects of mifepristone in metabolic syndrome from animal studies to clinical research. Also, we propose a potential mechanism for the beneficial effects in insulin sensitivity which involved the regulation of mitochondrial function in muscle cells.

14.
Front Pharmacol ; 10: 1201, 2019.
Article in English | MEDLINE | ID: mdl-31695610

ABSTRACT

Melanoma immunotherapy, specifically the autotransplant of dendritic cells charged with tumors antigens, has shown promising results in clinical trials. The positive clinical effects of this therapy have been associated to increased Th17 response and delayed-type hypersensitivity (DTH) against to tumor antigens. Some synthetic compounds, such as diphenylcyclopropenone (DPCP), are capable of triggering a DTH response in cutaneous malignancies and also to induce clinically relevant effects against melanoma. In this work, we evaluated Litre extract (LExT), a standardized extract of a Chilean stinging plant, Lithraea caustic (Litre). As Litre plant is known to induce DTH, we used a murine B16 melanoma model to compare the topical and intratumor efficacy of LExT with synthetic DTH inducers (DPCP and 2,4-dinitrochlorobenzene [DNCB]). LExt contained mainly long chain catechols and sesquiterpenes. The intratumor injection of LExT induced a significant delay in tumor growth, similarly topical treatment of an established tumor with 0.1% LExT ointment induced a growth delay and even tumor regression in 15% of treated animals. No significant changes were observed on the T-cell populations associated to LExT treatment, and neither DNCB nor DPCP were capable to induce none of the LExT-induced antitumoral effects. Interestingly, our results indicate that LExT induces an antitumor response against melanoma in a mouse model and could bring a new -and affordable- treatment for melanoma in humans.

15.
Article in English | MEDLINE | ID: mdl-29740394

ABSTRACT

Second-generation antipsychotics (SGAs) are known to increase cardiovascular risk through several physiological mechanisms, including insulin resistance, hepatic steatosis, hyperphagia, and accelerated weight gain. There are limited prophylactic interventions to prevent these side effects of SGAs, in part because the molecular mechanisms underlying SGAs toxicity are not yet completely elucidated. In this perspective article, we introduce an innovative approach to study the metabolic side effects of antipsychotics through the alterations of the mitochondrial dynamics, which leads to an imbalance in mitochondrial fusion/fission ratio and to an inefficient mitochondrial phenotype of muscle cells. We believe that this approach may offer a valuable path to explain SGAs-induced alterations in metabolic homeostasis.

16.
Front Immunol ; 8: 1170, 2017.
Article in English | MEDLINE | ID: mdl-29062313

ABSTRACT

Antigen cross-presentation is a crucial step in the assembly of an antitumor immune response leading to activation of naïve CD8 T cells. This process has been extensively used in clinical trials, in which dendritic cells generated in vitro are loaded with tumor antigens and then autotransplanted to the patients. Recently, the use of autologous transplant of dendritic cells fused with dying tumor cells has demonstrated good results in clinical studies. In this work, we generated a similar process in vivo by treating mice with dead tumor cells [cell bodies (CBs)] expressing the fusogenic protein of the infectious salmon anemia virus (ISAV). ISAV fusion protein retains its fusogenic capability when is expressed on mammalian cells in vitro and the CBs expressing it facilitates DCs maturation, antigen transfer by antigen-presenting cells, and increase cross-presentation by DCs in vitro. Additionally, we observed in the melanoma model that CBs with or without ISAV fusion protein reduce tumor growth in prophylactic treatment; however, only ISAV expressing CBs showed an increase CD4 and CD8 cells in spleen. Overall, our results suggest that CBs could be used as a complement with other type of strategies to amplify antitumor immune response.

17.
Front Neurosci ; 10: 488, 2016.
Article in English | MEDLINE | ID: mdl-27877101

ABSTRACT

Metabolic syndrome (MS) is a prevalent and severe comorbidity observed in schizophrenia (SZ). The exact nature of this association is controversial and very often accredited to the effects of psychotropic medications and disease-induced life-style modifications, such as inactive lifestyle, poor dietary choices, and smoking. However, drug therapy and disease-induced lifestyle factors are likely not the only factors contributing to the observed converging nature of these conditions, since an increased prevalence of MS is also observed in first episode and drug-naïve psychosis populations. MS and SZ share common intrinsic susceptibility factors and etiopathogenic mechanisms, which may change the way we approach clinical management of SZ patients. Among the most relevant common pathogenic pathways of SZ and MS are alterations in the sphingolipids (SLs) metabolism and SLs homeostasis. SLs have important structural functions as they participate in the formation of membrane "lipid rafts." SLs also play physiological roles in cell differentiation, proliferation, and inflammatory processes, which might be part of MS/SZ common pathophysiological processes. In this article we review a plausible mechanism to explain the link between MS and SZ through a disruption in SL homeostasis. Additionally, we provide insights on how this hypothesis can lead to the developing of new diagnostic/therapeutic technologies for SZ patients.

18.
J Sci Food Agric ; 96(2): 633-43, 2016 Jan 30.
Article in English | MEDLINE | ID: mdl-25683633

ABSTRACT

BACKGROUND: Little is known about varietal differences in the content of bioactive phytoecdysteroids (PE) and flavonoid glycosides (FG) from quinoa (Chenopodium quinoa Willd.). The aim of this study was to determine the variation in PE and FG content among 17 distinct quinoa sources and identify correlations to genotypic (highland vs. lowland) and physico-chemical characteristics (seed color, 100-seed weight, protein content, oil content). RESULTS: PE and FG concentrations exhibited over four-fold differences across quinoa sources, ranging from 138 ± 11 µg g(-1) to 570 ± 124 µg g(-1) total PE content and 192 ± 24 µg g(-1) to 804 ± 91 µg g(-1) total FG content. Mean FG content was significantly higher in highland Chilean varieties (583.6 ± 148.9 µg g(-1)) versus lowland varieties (228.2 ± 63.1 µg g(-1)) grown under the same environmental conditions (P = 0.0046; t-test). Meanwhile, PE content was positively and significantly correlated with oil content across all quinoa sources (r = 0.707, P = 0.002; Pearson correlation). CONCLUSION: FG content may be genotypically regulated in quinoa. PE content may be increased via enhancement of oil content. These findings may open new avenues for the improvement and development of quinoa as a functional food.


Subject(s)
Chenopodium quinoa/chemistry , Chenopodium quinoa/genetics , Ecdysteroids/analysis , Flavonoids/analysis , Genetic Variation , Glycosides/analysis , Chemical Phenomena , Chile , Chromatography, High Pressure Liquid , Ecdysteroids/chemistry , Flavonoids/chemistry , Functional Food/analysis , Genotype , Glycosides/chemistry , Mass Spectrometry , Nutritive Value , Seeds/chemistry , Seeds/genetics
19.
Pharmacol Res ; 101: 74-85, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26218604

ABSTRACT

Second generation antipsychotics (SGAs), such as clozapine, olanzapine, risperidone and quetiapine, are among the most effective therapies to stabilize symptoms schizophrenia (SZ) spectrum disorders. In fact, clozapine, olanzapine and risperidone have improved the quality of life of billions SZ patients worldwide. Based on the broad spectrum of efficacy and low risk of extrapyramidal symptoms displayed by SGAs, some regulatory agencies approved the use of SGAs in non-schizophrenic adults, children and adolescents suffering from a range of neuropsychiatric disorders. However, increasing number of reports have shown that SGAs are strongly associated with accelerated weight gain, insulin resistance, diabetes, dyslipidemia, and increased cardiovascular risk. These metabolic alterations can develop in as short as six months after the initiation of pharmacotherapy, which is now a controversial fact in public disclosure. Although the percentage of schizophrenic patients, the main target group of SGAs, is estimated in only 1% of the population, during the past ten years there was an exponential increase in the number of SGAs users, including millions of non-SZ patients. The scientific bases of SGAs metabolic side effects are not yet elucidated, but the evidence shows that the activation of transcriptional factor SRBP1c, the D1/D2 dopamine, GABA2 and 5HT neurotransmitions are implicated in the SGAs cardiovascular toxicity. Polypharmacological interventions are either non- or modestly effective in maintaining low cardiovascular risk in SGAs users. In this review we critically discuss the clinical and molecular evidence on metabolic alterations induced by SGAs, the evidence on the efficacy of classical antidiabetic drugs and the emerging concept of antidiabetic polyphenols as potential coadjutants in SGA-induced metabolic disorders.


Subject(s)
Antipsychotic Agents/adverse effects , Metabolic Syndrome/chemically induced , Obesity/chemically induced , Adolescent , Adult , Animals , Child , Humans , Hypoglycemic Agents/therapeutic use , Lipid Metabolism/drug effects , Metabolic Syndrome/metabolism , Metabolic Syndrome/prevention & control , Models, Biological , Obesity/metabolism , Obesity/prevention & control , Polyphenols/therapeutic use , Psychopharmacology , Weight Gain/drug effects
20.
Compr Rev Food Sci Food Saf ; 14(4): 431-445, 2015 Jul.
Article in English | MEDLINE | ID: mdl-27453695

ABSTRACT

Quinoa (Chenopodium quinoa Willd., Amaranthaceae) is a grain-like, stress-tolerant food crop that has provided subsistence, nutrition, and medicine for Andean indigenous cultures for thousands of years. Quinoa contains a high content of health-beneficial phytochemicals, including amino acids, fiber, polyunsaturated fatty acids, vitamins, minerals, saponins, phytosterols, phytoecdysteroids, phenolics, betalains, and glycine betaine. Over the past 2 decades, numerous food and nutraceutical products and processes have been developed from quinoa. Furthermore, 4 clinical studies have demonstrated that quinoa supplementation exerts significant, positive effects on metabolic, cardiovascular, and gastrointestinal health in humans. However, vast challenges and opportunities remain within the scientific, agricultural, and development sectors to optimize quinoa's role in the promotion of global human health and nutrition.

SELECTION OF CITATIONS
SEARCH DETAIL
...