Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
ACS Nano ; 17(21): 21531-21538, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37902648

ABSTRACT

Lithium-ion batteries (LIBs) are the dominating energy storage technology for electric vehicles and portable electronic devices. Since the resources of raw materials for LIBs are limited and recycling technologies for LIBs are still under development, improvements in the long-term stability of LIBs are of paramount importance and, in addition, would lead to a reduction in the levelized cost of storage (LCOS). A crucial limiting factor is the aging of the solid electrolyte interphase (SEI) on the active material particles in the anode. Here, we demonstrate the potential of atom probe tomography for elucidating the complex mosaic-type structure of the SEI in a graphite composite anode. Our 3D reconstruction shows unseen details and reveals the existence of an apolar organic microphase pervading the SEI over its entire thickness. This finding is in stark contrast to the prevalent two-layer SEI model, in which organic compounds are the dominating species only in the outer SEI layer being in contact with the liquid electrolyte. The observed spatial arrangement of the apolar organic microphase promises a better understanding of the passivation capability of the SEI, which is necessary to expand the battery lifetime.

2.
Chem Commun (Camb) ; 58(70): 9826-9829, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35975673

ABSTRACT

A series of well-defined cationic hepta-coordinate bismuth halides [BiX2(py)5][B(3,5-(CF3)2-C6H3)4] (X = Cl, Br, I), stabilized only by substitutionally labile solvent molecules, were synthesized and fully characterized. Their apparent D5h symmetry with a lone pair at the central atom is unprecedented for main group compounds. The potential of BiX3 to show unexpectedly high Lewis acidities in moderately polar solvents is likely due to the formation of [BiX2(solv)5]+ and related ionic species.

3.
ACS Appl Mater Interfaces ; 14(33): 38246-38254, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35969680

ABSTRACT

The performance of bulk-type all-solid-state Li batteries (ASSBs) depends critically on the contacts between cathode active material (CAM) particles and solid electrolyte (SE) particles inside the composite cathodes. These contacts determine the Li+ exchange current density at the CAM | SE interfaces. Nevertheless, there is a lack of experimental studies on Li+ exchange current densities, which may be caused by the poor understanding of the impedance spectra of ASSBs. We have carried out a comparative case study using two different active materials, namely, single-crystalline LiCoO2 particles and single-crystalline LiNi0.83Mn0.06Co0.11O2 particles. Amorphous 0.67 Li3PS4 + 0.33 LiI particles act as a solid electrolyte within the cathode and separator, and lithiated indium acts as the anode. The determination of the cathode exchange current density is based on (i) impedance measurements on In-Li | SE | In-Li symmetric cells in order to determine the anode impedance together with the anode | separator interfacial impedance and (ii) variation in the composite cathode thickness in order to differentiate between the ion transport resistance and the charge transfer resistance of the composite cathode. We show that under the application of stack pressures in the range of 400 MPa, the Li+ exchange current densities can compete with or even exceed those obtained for CAM | liquid electrolyte interfaces.

4.
Sci Rep ; 11(1): 18133, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34518556

ABSTRACT

Electrochemical strain microscopy (ESM) has been developed with the aim of measuring Vegard strains in mixed ionic-electronic conductors (MIECs), such as electrode materials for Li-ion batteries, caused by local changes in the chemical composition. In this technique, a voltage-biased AFM tip is used in contact resonance mode. However, extracting quantitative strain information from ESM experiments is highly challenging due to the complexity of the signal generation process. In particular, electrostatic interactions between tip and sample contribute significantly to the measured ESM signals, and the separation of Vegard strain-induced signal contributions from electrostatically induced signal contributions is by no means a trivial task. Recently, we have published a compensation method for eliminating frequency-independent electrostatic contributions in ESM measurements. Here, we demonstrate the potential of this method for detecting Vegard strain in MIECs by choosing Cu[Formula: see text]Mo[Formula: see text]S[Formula: see text] as a model-type MIEC with an exceptionally high Cu chemical diffusion coefficient. Even for this material, Vegard strains are only measurable around and above room-temperature and with proper elimination of electrostatics. The analyis of the measured Vegards strains gives strong indication that due to a high charge transfer resistance at the tip/interface, the local Cu concentration variations are much smaller than predicted by the local Nernst equation. This suggests that charge transfer resistances have to be analyzed in more detail in future ESM studies.

5.
Inorg Chem ; 60(7): 5224-5231, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33764781

ABSTRACT

The crystalline selenido germanates [Li4(H2O)16][Ge4Se10]·4.3H2O (1), [{Li4(thf)12}Ge4Se10] (2), and [Li2(H2O)8][MnGe4Se10] (3) (thf = THF = tetrahydrofuran) were obtained by an extraction of a glassy ternary phase of the nominal composition Li4Ge4Se10 (=Li2S·2GeSe2) with water (1) or THF (2) and slow evaporation of the solvent or by being layered with MnBr2 in H2O/MeOH (3), respectively. The compounds contain known selenido germanate anions, however, for the first time with Li+ counterions. This is especially remarkable for the prominent ∞3{[MnGe4Se10]2-} open-framework structure, which was reported to crystallize with (NMe4)+, Cs+, Rb+, and K+ counterions, but it has not yet been realized with the smallest alkali metal cation. Impedance spectroscopic studies on Li4Ge4Se10 classify the glassy solid as a moderate Li+ ion conductor.

6.
Phys Chem Chem Phys ; 23(1): 628-640, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33332521

ABSTRACT

Directional correlations between the movements of cations and anions exert a strong influence on the charge and mass transport properties of concentrated battery electrolytes. Here, we combine, for the first time, very-low-frequency impedance spectroscopy on symmetrical Li|electrolyte|Li cells with diffusion and electrophoretic NMR in order to quantify cation-cation, anion-anion and cation-anion correlations in Li salt/tetraglyme (G4) mixtures with Li salt to G4 ratios between 1 : 1 and 1 : 2. We find that all correlations are negative, with like-ion anticorrelations (cation-cation and anion-anion) being generally stronger than cation-anion anticorrelations. In addition, we observe that like-ion anticorrelations are stronger for the heavier type of ion and that all anticorrelations become weaker with decreasing Li salt to G4 ratio. These findings are in contrast to theories considering exclusively anion-cation correlations in form of ion pairs, as the latter imply positive cation-anion correlations. We analyze in detail the influence of anticorrelations on Li+ transference numbers and on the Haven ratio. In order to rationalize our results, we derive linear response theory expressions for all ion correlations. These expressions show that the Li+ ion transport under anion-blocking conditions in a battery is governed by equilibrium center-of-mass fluctuations in the electrolytes. This suggests that in future electrolyte theories and computer simulations, more attention should be paid to equilibrium center-of-mass fluctuations.

7.
ACS Appl Mater Interfaces ; 12(17): 20012-20025, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32251596

ABSTRACT

All-solid-state batteries with solid electrolytes having ionic conductivities in the range of those of liquid electrolytes have gained much interest as safety is still a major issue for applications. Meanwhile, lithium metal seems to be the anode material of choice to face the demand for higher capacities. Still, the main challenges that come with the use of a lithium metal anode, i.e., formation and growth of lithium dendrites, are still not understood very well. This work focuses on the reasons of the lifetime behavior of lithium symmetric cells with the solid electrolyte Li6PS5Cl and lithium electrode. In particular, the voltage increases during the application of a constant current density are investigated. The interface between the lithium metal electrode and the solid electrolyte is analyzed by X-ray photoelectron spectroscopy, and the resistance changes of each electrode during stripping and plating are investigated by impedance spectroscopy on a three-electrode cell. A main factor for the lifetime influenced by lithium dendrite formation and growth is the buildup of a lithium vacancy gradient, leading to voids which decrease the interface area and therefore increase the local current density. Additionally, those lithium vacancies in lithium metal represent a limitation for conductivity rather than migration in solid electrolyte. Further experiments indicate that the seedlike plating behavior of lithium also plays a key role in increased local current density and therefore decreased lifetime. Plating of only a small amount of lithium leads to small areas of well-connected interfaces, resulting in high local current density. A medium amount of plated lithium leads to larger areas of interface between lithium and electrolyte, balancing the current density distribution. In contrast, a high amount of repeatedly deposited lithium leads to lithium seed plating on top of already plated lithium. Those seed spots grown on top represent a better interface connection, which again leads to higher local current densities at those spots and therefore results in shorter lifetimes due to short circuits caused by lithium dendrites.

8.
ACS Appl Mater Interfaces ; 11(5): 5476-5483, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30620553

ABSTRACT

Detailed understanding of electrochemical transport processes on the nanoscale is considered not only as a topic of fundamental scientific interest but also as a key to optimize material systems for application in electrochemical energy storage. A prominent example is solid-state electrolytes, where transport properties are strongly influenced by the microscopic structure of grain boundaries or interface regimes. However, direct characterization of ionic transport processes on the nanoscale remains a challenge. For a heterogeneous Li+-conducting glass ceramic, we demonstrate quantitative nanoscopic probing of electrochemical properties on the basis of temperature-controlled growth of nanoscopic Li particles with conductive tip atomic force microscopy. The characteristic energy barriers can be derived from the particle growth dynamics and are consistent with simultaneously recorded nanovoltammetry, which can be interpreted as an interplay between overpotentials, ion conductivity, and nanoscale spreading resistance. In the low-temperature limit at around 170 K, where the particle growth speed is slowed down by several orders of magnitude with respect to room temperature, we demonstrate ion-conductivity mapping with lateral resolutions only limited by the effective tip-surface contact radius. Our mapping measurements reveal the insulating character of the AlPO4 phase, whereas any influence of grain boundaries is related to subsurface constrictions of the current paths.

9.
Inorg Chem ; 58(7): 4052-4054, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30251538

ABSTRACT

K2Hg2Te3 was synthesized via a mercury-flux synthesis pathway. Single-crystal and powder X-ray diffraction reveal the compound to be isostructural to its lighter congener K2Hg2Se3, yet exhibiting enhanced photoconductivity and electrical conductivity of (several) orders of magnitude and a decreased thermal conductivity and band gap. In this report, we elaborate on the synthesis and properties of the novel ternary compound.

10.
Phys Chem Chem Phys ; 20(46): 29174-29183, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30426990

ABSTRACT

An experimental analysis based on very-low-frequency (VLF) impedance spectra and the Onsager reciprocal relations is combined with advanced analysis of dynamic correlations in atomistic molecular simulations in order to investigate Li+ transport in solvate ionic liquids (SILs). SILs comprised of an equimolar mixture of a lithium salt with glyme molecules are considered as a promising class of highly concentrated electrolytes for future Li-ion batteries. Both simulations and experiments on a prototypical Li-bis(trifluoromethanesulfonyl)imide (TFSI) salt/tetraglyme mixture show that while the ionic conductivity and the Li+ transport number are quite high, the Li+ transference number under 'anion-blocking conditions' is extremely low, making these electrolytes rather inefficient for battery applications. The contribution of cation-anion correlation to the total ionic conductivity has been extracted from both studies, revealing a highly positive contribution due to strongly anti-correlated cation-anion motions. Such cation-anion anti-correlations have also been found in standard ionic liquids and are a consequence of the constraint of momentum conservation. The molecular origin of low Li+ transference number and the influence of anti-correlated motions on Li+ transport efficiency have been investigated as a function of solvent composition. We demonstrate that Li+ transference number can be increased either by reducing the residence time between Li+ and solvent molecules or by adding excessive solvent molecules that are not complexing with Li+.

11.
J Chem Phys ; 148(19): 193820, 2018 May 21.
Article in English | MEDLINE | ID: mdl-30307257

ABSTRACT

The potential of zero charge (PZC) is a fundamental property that describes the electrode/electrolyte interface. The determination of the PZC at electrode/ionic liquid interfaces has been challenging due to the lack of models that fully describe these complex interfaces as well as the non-standardized approaches used to characterize them. In this work, we present a method that combines electrode immersion transient and impedance measurements for the determination of the PZC. This combined approach allows the distinction of the potential of zero free charge (pzfc), related to fast double layer charging on a millisecond timescale, from a potential of zero charge on a timescale of tens of seconds related to slower ion transport processes at the interface. Our method highlights the complementarity of these electrochemical techniques and the importance of selecting the correct timescale to execute experiments and interpret the results.

12.
Chemistry ; 24(35): 8756-8759, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29577463

ABSTRACT

The crystalline phase ß-[N(CH3 )4 ]2 HP3 O9 undergoes a reversible phase transition to γ-[N(CH3 )4 ]2 HP3 O9 , which was studied by dynamic scanning calorimetry and X-ray diffraction. The rotational dynamics of the anion [P3 O9 ]3- were evident from variable temperature 31 P magic angle spinning (MAS) NMR spectroscopy. The rotational dynamics could be simulated with a 3-site jump model, which yields spectra in good agreement with experiment. An activation energy of 0.6 eV could be estimated from line shape analysis. Impedance spectra reflect a bulk proton conductivity of γ-[N(CH3 )4 ]2 HP3 O9 of 6.9×10-5  S cm-1 at 240 °C and an activation energy of approximately 1.0 eV. Thus this salt features bulk protonic motion, while local rotational anionic motion happens with activation energies of the same order, as suggested by the paddle-wheel mechanism.

13.
Angew Chem Int Ed Engl ; 57(5): 1351-1355, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29266642

ABSTRACT

Highly conductive solid electrolytes are crucial to the development of efficient all-solid-state batteries. Meanwhile, the ion conductivities of lithium solid electrolytes match those of liquid electrolytes used in commercial Li+ ion batteries. However, concerns about the future availability and the price of lithium made Na+ ion conductors come into the spotlight in recent years. Here we present the superionic conductor Na11 Sn2 PS12 , which possesses a room temperature Na+ conductivity close to 4 mS cm-1 , thus the highest value known to date for sulfide-based solids. Structure determination based on synchrotron X-ray powder diffraction data proves the existence of Na+ vacancies. As confirmed by bond valence site energy calculations, the vacancies interconnect ion migration pathways in a 3D manner, hence enabling high Na+ conductivity. The results indicate that sodium electrolytes are about to equal the performance of their lithium counterparts.

14.
Phys Chem Chem Phys ; 17(47): 31790-800, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26563554

ABSTRACT

A Li4Ti5O12 (LTO) film was coated as buffer layer onto a LiNi0.5Mn1.5O4 (LNMO) high-voltage cathode, and after cycling of the cathode in a battery electrolyte, the LTO film was investigated by means of synchrotron radiation based hard X-ray photoelectron spectroscopy (HAXPES). By tuning the photon energy between 2 keV and 6 keV, we obtained non-destructive depth profiles of the coating material with probing depths ranging from 6 nm to 20 nm. The coating was found to be covered by a few nanometers thin surface layer resulting from electrolyte decomposition. This layer consisted predominantly of organic polymers as well as metal fluorides and fluorophosphates. A positive influence of the Li4Ti5O12 coating with regard to the size and stability of the surface layer was found. The coating itself consisted of a uniform mixture of Li(I), Ti(IV), Ni(II) and Mn(IV) oxides that most likely adopted a spinel structure by forming a solid solution of the two spinels LiNi0.5Mn1.5O4 and Li4Ti5O12 with Li, Mn, Ni and Ti cations mixing on the spinel octahedral sites. The diffusion of Ni and Mn ions into the Li4Ti5O12 lattice occurred during the heat treatment when preparing the cathode. The doping of Li4Ti5O12 with the open d-shell ions Ni(2+) (d(8)) and Mn(4+) (d(3)) should increase the electronic conductivity of the coating significantly, as was found in previous studies. The complex signal structure of the Ti 2p, Ni 2p and Mn 2p core levels provides insight into the chemical nature of the transition metal ions.

15.
Chemistry ; 21(6): 2613-20, 2015 Feb 02.
Article in English | MEDLINE | ID: mdl-25504790

ABSTRACT

New salts based on imidazolium, pyrrolidinium, phosphonium, guanidinium, and ammonium cations together with the 5-cyanotetrazolide anion [C2 N5 ](-) are reported. Depending on the nature of cation-anion interactions, characterized by XRD, the ionic liquids (ILs) have a low viscosity and are liquid at room temperature or have higher melting temperatures. Thermogravimetric analysis, cyclic voltammetry, viscosimetry, and impedance spectroscopy display a thermal stability up to 230 °C, an electrochemical window of 4.5 V, a viscosity of 25 mPa s at 20 °C, and an ionic conductivity of 5.4 mS cm(-1) at 20 °C for the IL 1-butyl-1-methylpyrrolidinium 5-cyanotetrazolide [BMPyr][C2 N5 ]. On the basis of these results, the synthesized compounds are promising electrolytes for lithium-ion batteries.

16.
J Am Chem Soc ; 135(42): 15694-7, 2013 Oct 23.
Article in English | MEDLINE | ID: mdl-24079534

ABSTRACT

The reaction of Li2S and P2S5 with Li4[SnS4], a recently discovered, good Li(+) ion conductor, yields Li10SnP2S12, the thiostannate analogue of the record holder Li10GeP2S12 and the second compound of this class of superionic conductors with very high values of 7 mS/cm for the grain conductivity and 4 mS/cm for the total conductivity at 27 °C. The replacement of Ge by Sn should reduce the raw material cost by a factor of ~3.

17.
Adv Mater ; 25(24): 3313-8, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23529920

ABSTRACT

Nanocomposite patterns and nanotemplates are generated by a single-step bottom-up concept that introduces laser-induced periodic surface structures (LIPSS) as a tool for site-specific reaction control in multicomponent systems. Periodic intensity fluctuations of this photothermal stimulus inflict spatial-selective reorganizations, dewetting scenarios and phase segregations, thus creating regular patterns of anisotropic physicochemical properties that feature attractive optical, electrical, magnetic, and catalytic properties.

18.
Phys Chem Chem Phys ; 14(15): 5090-9, 2012 Apr 21.
Article in English | MEDLINE | ID: mdl-22402629

ABSTRACT

Ionic liquids are of high interest for the development of safe electrolytes in modern electrochemical cells, such as batteries, supercapacitors and dye-sensitised solar cells. However, electrochemical applications of ionic liquids are still hindered by the limited understanding of the interface between electrode materials and ionic liquids. In this article, we first review the state of the art in both experiment and theory. Then we illustrate some general trends by taking the interface between the extremely pure ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate and an Au(111) electrode as an example. For the study of this interface, electrochemical impedance spectroscopy was combined with in situ STM and in situ AFM techniques. In addition, we present new results for the temperature dependence of the interfacial capacitance and dynamics. Since the interfacial dynamics are characterised by different processes taking place on different time scales, the temperature dependence of the dynamics can only be reliably studied by recording and carefully analysing broadband capacitance spectra. Single-frequency experiments may lead to artefacts in the temperature dependence of the interfacial capacitance. We demonstrate that the fast capacitive process exhibits a Vogel-Fulcher-Tamman temperature dependence, since its time scale is governed by the ionic conductivity of the ionic liquid. In contrast, the slower capacitive process appears to be Arrhenius activated. This suggests that the time scale of this process is determined by a temperature-independent barrier, which may be related to structural reorganisations of the Au surface and/or to charge redistributions in the strongly bound innermost ion layer.

19.
Inorg Chem ; 51(6): 3349-51, 2012 Mar 19.
Article in English | MEDLINE | ID: mdl-22384785

ABSTRACT

Two salts with one-dimensional, SiS(2)-type telluridostannate chain anions {[MSnTe(4)](2-)}(n), Rb(2)[HgSnTe(4)] (2) and (NMe(4))(2)[MnSnTe(4)] (3), were prepared by the reactions of [SnTe](4-) anions with Hg(2+) or Mn(2+) ions in solution. We present the crystal structures of 2 and 3, as well as the magnetic properties of the previously reported Cs(+) analogue Cs(2)[MnSnTe(4)] (1).

20.
Faraday Discuss ; 154: 303-11; discussion 313-33, 465-71, 2012.
Article in English | MEDLINE | ID: mdl-22455027

ABSTRACT

Electrochemical impedance spectroscopy was used to characterise the interface between the ultrapure room temperature ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate and a Au(111) working electrode at electrode potentials more positive than the open circuit potential (-0.14 V vs. Pt pseudo-reference). Plots of the potential-dependent data in the complex capacitance plane reveal the existence of a fast and a slow capacitive process. In order to derive the contribution of both processes to the overall capacitance, the complex capacitance data were fitted using an empirical Cole-Cole equation. The differential capacitance of the fast process is almost constant between -0.14 V and +0.2 V (vs. Pt pseudo-reference) and decreases at more positive potentials, while the differential capacitance of the slower process exhibits a maximum at +0.2 V. This maximum leads to a maximum in the overall differential capacitance. We attribute the slow process to charge redistributions in the innermost ion layer, which require an activation energy in excess of that for ion transport in the room temperature ionic liquid. The differential capacitance maximum of the slow process at +0.2 V is most likely caused by reorientations of the 1-butyl-1l-methylpyrrolidinium cations in the innermost layer with the positively charged ring moving away from the Au(111) surface and leaving behind voids which are then occupied by anions. In a recent Monte Carlo simulation by Federov, Georgi and Kornyshev (Electrochem. Commun. 2010, 12, 296), such a process was identified as the origin of a differential capacitance maximum in the anodic regime. Our results suggest that the time scales of capacitive processes at the ionic liquid/metal interface are an important piece of information and should be considered in more detail in future experimental and theoretical studies.


Subject(s)
Gold/chemistry , Ionic Liquids/chemistry , Electrochemistry , Electrodes , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...