Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Clin Chim Acta ; 561: 119765, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38852790

ABSTRACT

BACKGROUND AND AIMS: Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations to the CF transmembrane conductance regulator (CFTR). Symptoms and severity of the disease can be quite variable suggesting modifier genes play an important role. MATERIALS AND METHODS: Exome sequencing was performed on six individuals carrying homozygous deltaF508 for CFTR genotype but present with rapidly progressing CF (RPCF). Data was analyzed using an unbiased genome-wide genetic burden test against 3076 controls. Single cell RNA sequencing data from LungMAP was utilized to evaluate unique and co-expression of candidate genes, and structural modeling to evaluate the deleterious effects of identified candidate variants. RESULTS: We have identified solute carrier family 26 member 9 (SLC26A9) as a modifier gene to be associated with RPCF. Two rare missense SLC26A9 variants were discovered in three of six individuals deemed to have RPCF: c.229G > A; p.G77S (present in two patients), and c.1885C > T; p.P629S. Co-expression of SLC26A9 and CFTR mRNA is limited across different lung cell types, with the highest level of co-expression seen in human (6.3 %) and mouse (9.0 %) alveolar type 2 (AT2) cells. Structural modeling suggests deleterious effects of these mutations as they are in critical protein domains which might affect the anion transport capability of SLC26A9. CONCLUSION: The enrichment of rare and potentially deleterious SLC26A9 mutations in patients with RPCF suggests SLC26A9 may act as an alternative anion transporter in CF and is a modifier gene associated with this lung phenotype.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Homozygote , Mutation , Sulfate Transporters , Humans , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Sulfate Transporters/genetics , Sulfate Transporters/chemistry , Sulfate Transporters/metabolism , Female , Male , Antiporters/genetics , Antiporters/chemistry , Animals , Mice
4.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L462-L478, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35020534

ABSTRACT

There is an urgent need to understand how SARS-CoV-2 infects the airway epithelium and in a subset of individuals leads to severe illness or death. Induced pluripotent stem cells (iPSCs) provide a near limitless supply of human cells that can be differentiated into cell types of interest, including airway epithelium, for disease modeling. We present a human iPSC-derived airway epithelial platform, composed of the major airway epithelial cell types, that is permissive to SARS-CoV-2 infection. Subsets of iPSC-airway cells express the SARS-CoV-2 entry factors angiotensin-converting enzyme 2 (ACE2), and transmembrane protease serine 2 (TMPRSS2). Multiciliated cells are the primary initial target of SARS-CoV-2 infection. On infection with SARS-CoV-2, iPSC-airway cells generate robust interferon and inflammatory responses, and treatment with remdesivir or camostat mesylate causes a decrease in viral propagation and entry, respectively. In conclusion, iPSC-derived airway cells provide a physiologically relevant in vitro model system to interrogate the pathogenesis of, and develop treatment strategies for, COVID-19 pneumonia.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Epithelial Cells , Humans , SARS-CoV-2
5.
PLoS One ; 9(3): e92841, 2014.
Article in English | MEDLINE | ID: mdl-24658298

ABSTRACT

PURPOSE: To analyze the topographic correlation between reticular pseudodrusen (RPD) visualized on infrared reflectance (IR) and choroidal vasculature using en-face volumetric spectral-domain optical coherence tomography (SD-OCT). METHODS: A masked observer marked individual RPD on IR images using ImageJ (NIH, Bethesda, MD). Using the macular volume scan (Cirrus, Carl Zeiss Meditec Inc, Dublin, CA), the RPE slab function was used to generate a C-scan of the most superficial choroidal vasculature. An independent masked grader created a topographic binary map of the choroidal vasculature by thresholding the en-face image, which was overlaid onto the IR map of RPD. For each IR image, ImageJ was used to generate a random set of dots as "control lesions". RESULTS: 17 eyes of 11 patients (78±13.7 years) with RPD were analyzed. The average number of RPD lesions identified on IR images was 414±71.5, of which 49.6±4.3% were located overlying the choroidal vasculature, compared to 45.4±4.0% in controls (p = 0.014). 50.4±4.3% of lesions overlay the choroidal stroma, of which 76.5±3.1% were ≤3 pixels from the choroidal vessels. The percentage of RPD lesions located within ≤3 pixels from the choroidal vasculature was significantly greater than the percentage located ≥7 pixels away. (p<0.0001). Compared to controls (71.6±3.8%), RPD were more likely to be located ≤3 pixels away from choroidal vessels (p = 0.014). In contrast, control lesions were more likely to be ≥7 pixels away from choroidal vessels than RPD (9.1±1.9% vs. 4.8±1.2%, respectively, p = 0.002). CONCLUSIONS: Our analysis shows that RPD lesions follow the underlying choroidal vasculature. Approximately half the RPD directly overlay the choroidal vessels and the majority of the remaining lesions were ≤3 pixels (≤30 microns) from the vessel edge, supporting the hypothesis that RPD maybe related to pathologic changes at the choroidal level.


Subject(s)
Choroid/blood supply , Retinal Drusen/diagnosis , Tomography, Optical Coherence , Aged , Aged, 80 and over , Female , Humans , Macula Lutea/pathology , Male , Retrospective Studies
6.
Adv Exp Med Biol ; 801: 669-75, 2014.
Article in English | MEDLINE | ID: mdl-24664757

ABSTRACT

Diabetic Retinopathy is one of the hallmark microvascular diseases secondary to diabetes. Endothelial cells and pericytes are key players in the pathogenesis. Interaction between the two cell types is important in the regulation of vascular function and the maintenance of the retinal homeostatic environment. There are currently several approaches to analyze changes in morphology and function of the two cell types. Morphologic approaches include trypsin digest, while functional approaches include studying blood flow. This review explores the advantages and limitations of various methods and summarizes recent experimental studies of EC and pericyte dysfunction in rodent models of DR. An improved understanding of the role played by EC and pericyte dysfunction can lead to enhanced insights into retinal vascular regulation in DR and open new avenues for future treatments that reverse their dysfunction.


Subject(s)
Diabetic Retinopathy/pathology , Disease Models, Animal , Endothelial Cells/pathology , Oximetry/methods , Pericytes/pathology , Rodentia , Animals , Diabetic Retinopathy/physiopathology , Retinal Vessels/pathology , Retinal Vessels/physiopathology
7.
Invest Ophthalmol Vis Sci ; 55(4): 2516-25, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24644048

ABSTRACT

PURPOSE: We sought to determine the effects of atrasentan, a selective endothelin-A receptor antagonist, on the retinal vascular and structural integrity in a db/db mouse, an animal model of type 2 diabetes and diabetic retinopathy. METHODS: Diabetic mice, 23 weeks old, were given either atrasentan or vehicle treatment in drinking water for 8 weeks. At the end of the treatment period, eyes underwent trypsin digest to assess the retinal vascular pathology focusing on capillary degeneration, endothelial cell, and pericyte loss. Paraffin-embedded retinal cross sections were used to evaluate retinal sublayer thickness both near the optic nerve and in the retinal periphery. Immunohistochemistry and TUNEL assay were done to evaluate retinal cellular and vascular apoptosis. RESULTS: Compared with untreated db/db mice, atrasentan treatment was able to ameliorate the retinal vascular pathology by reducing pericyte loss (29.2% ± 0.4% vs. 44.4% ± 2.0%, respectively, P < 0.05) and capillary degeneration as determined by the percentage of acellular capillaries (8.6% ± 0.3% vs. 3.3% ± 0.41%, respectively, P < 0.05). A reduction in inner retinal thinning both at the optic nerve and at the periphery in treated diabetic mice was also observed in db/db mice treated with atrasentan as compared with untreated db/db mice (P < 0.05). TUNEL assay suggested that atrasentan may decrease enhanced apoptosis in neuroretinal layers and vascular pericytes in the db/db mice. CONCLUSIONS: Endothelin-A receptor blockade using atrasentan significantly reduces the vascular and neuroretinal complications in diabetic mice. Endothelin-A receptor blockade is a promising therapeutic target in diabetic retinopathy.


Subject(s)
Apoptosis/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetic Retinopathy/drug therapy , Endothelin Receptor Antagonists , Pyrrolidines/therapeutic use , Retinal Ganglion Cells/drug effects , Retinal Vessels/drug effects , Animals , Atrasentan , Cell Count , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Endothelin-1/antagonists & inhibitors , Female , Immunohistochemistry , In Situ Nick-End Labeling , Mice , Mice, Inbred C57BL , Retinal Ganglion Cells/pathology , Retinal Vessels/pathology
8.
Invest Ophthalmol Vis Sci ; 55(3): 1493-501, 2014 Mar 10.
Article in English | MEDLINE | ID: mdl-24519428

ABSTRACT

PURPOSE: We sought to determine the effect of sildenafil on retinal vascular changes in a mouse model of oxygen-induced retinopathy (OIR). METHODS: Vascular defects in OIR mice were quantified by measuring vaso-obliteration at postnatal days 12 and 17 (P12 and P17) and neovascularization at P17 to compare sildenafil-treated to dextrose-treated OIR mice. Retinal HIF1α protein expression was quantified by Western blotting and normalized to that of ß-actin. Right ventricular hypertrophy was measured by Fulton's index as a surrogate for hyperoxia-induced pulmonary hypertension. RESULTS: At P12, OIR mice treated with sildenafil demonstrated a 24% reduction in vaso-obliteration (P < 0.05), whereas at P17, treated animals showed a 50% reduction in neovascularization (P < 0.05) compared to dextrose-treated controls. Sildenafil-treated OIR mice had stabilization of retinal HIF1α at P12, immediately after hyperoxia. At P17, sildenafil-treated OIR mice had decreased HIF1α relative to untreated mice. OIR mice developed right ventricle hypertrophy that was significant compared to that in room air controls, which was abrogated by sildenafil. CONCLUSIONS: Sildenafil treatment significantly decreased retinal vaso-obliteration and neovascularization in a mouse OIR model. These effects are likely due to sildenafil-induced HIF1α stabilization during hyperoxia exposure. Furthermore, we confirm disease overlap by showing that OIR mice also develop hyperoxia-induced right ventricular hypertrophy, which is prevented by sildenafil. This study is a first step toward delineating a potential therapeutic role for sildenafil in OIR and further suggests that there may be common pathophysiologic mechanisms underlying hyperoxia-induced retinal and pulmonary vascular disease.


Subject(s)
Piperazines/pharmacology , Retinal Neovascularization/drug therapy , Retinal Vessels/physiopathology , Retinopathy of Prematurity/complications , Sulfones/pharmacology , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL , Purines/pharmacology , Retinal Neovascularization/etiology , Retinal Neovascularization/pathology , Retinal Vessels/drug effects , Retinal Vessels/pathology , Retinopathy of Prematurity/drug therapy , Retinopathy of Prematurity/pathology , Sildenafil Citrate , Vasoconstriction/drug effects , Vasodilator Agents/pharmacology
9.
J Vis Exp ; (76): e50489, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-23793268

ABSTRACT

Trypsin digest is the gold standard method to analyze the retinal vasculature (1-5). It allows visualization of the entire network of complex three-dimensional retinal blood vessels and capillaries by creating a two-dimensional flat-mount of the interconnected vascular channels after digestion of the non-vascular components of the retina. This allows one to study various pathologic vascular changes, such as microaneurysms, capillary degeneration, and abnormal endothelial to pericyte ratios. However, the method is technically challenging, especially in mice, which have become the most widely available animal model to study the retina because of the ease of genetic manipulations (6,7). In the mouse eye, it is particularly difficult to completely remove the non-vascular components while maintaining the overall architecture of the retinal blood vessels. To date, there is a dearth of literature that describes the trypsin digest technique in detail in the mouse. This manuscript provides a detailed step-by-step methodology of the trypsin digest in mouse retina, while also providing tips on troubleshooting difficult steps.


Subject(s)
Retinal Vessels/anatomy & histology , Retinal Vessels/metabolism , Trypsin/metabolism , Animals , Dissection , Mice , Models, Animal , Rats , Retina/surgery , Trypsin/chemistry
10.
Infect Immun ; 80(4): 1537-45, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22290148

ABSTRACT

Many pathogens regulate or modify their immune-stimulating ligands to avoid detection by their infected hosts. Listeria monocytogenes, a facultative intracellular bacterial pathogen, interacts with multiple components of mammalian innate immunity during its infection cycle. During replication within the cytosol of infected cells, L. monocytogenes utilizes two multidrug efflux pumps, MdrM and MdrT, to secrete the small nucleic acid second messenger cyclic-di-AMP (c-di-AMP). Host recognition of c-di-AMP triggers the production of type I interferons, including beta interferon (IFN-ß), which, surprisingly, promote L. monocytogenes virulence. In this study, we have examined the capacity of multiple laboratory and clinical isolates of L. monocytogenes to stimulate host production of IFN-ß. We have identified the L. monocytogenes strain LO28 as able to hyperinduce IFN-ß production in infected cells ∼30-fold more than the common laboratory clone L. monocytogenes strain 10403S. Genomic analyses determined that LO28 contains a naturally occurring loss-of-function allele of the transcriptional regulator BrtA and correspondingly derepresses expression of MdrT. Surprisingly, while derepression of MdrT resulted in hyperstimulation of IFN-ß, it results in significant attenuation in multiple mouse models of infection. While type I interferons may promote L. monocytogenes virulence, this study demonstrates that unregulated expression of the c-di-AMP-secreting efflux pump MdrT significantly restricts virulence in vivo by an unknown mechanism.


Subject(s)
Bacterial Proteins/metabolism , Genes, MDR , Interferon-beta/biosynthesis , Listeria monocytogenes/genetics , Listeria monocytogenes/immunology , Membrane Transport Proteins/metabolism , Animals , Bacterial Proteins/genetics , Base Sequence , Cells, Cultured , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Listeria monocytogenes/pathogenicity , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Membrane Transport Proteins/genetics , Mice , Mice, Inbred C57BL , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL