Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 148(1): 294-303, 2007 Aug 10.
Article in English | MEDLINE | ID: mdl-17614210

ABSTRACT

Recurring patterns of neural activity, a potential substrate of both information transfer and transformation in cortical networks, have been observed in the intact brain and in brain slices. Do these patterns require the inherent cortical microcircuitry of such preparations or are they a general property of self-organizing neuronal networks? In networks of dissociated cortical neurons from rats--which lack evidence of the intact brain's intrinsic cortical architecture--we have observed a robust set of spontaneously repeating spatiotemporal patterns of neural activity, using a template-matching algorithm that has been successful both in vivo and in brain slices. The observed patterns in cultured monolayer networks are stable over minutes of extracellular recording, occur throughout the culture's development, and are temporally precise within milliseconds. The identification of these patterns in dissociated cultures opens a powerful methodological avenue for the study of such patterns, and their persistence despite the topological and morphological rearrangements of cellular dissociation is further evidence that precisely timed patterns are a universal emergent feature of self-organizing neuronal networks.


Subject(s)
Action Potentials/physiology , Cerebral Cortex/physiology , Nerve Net/physiology , Neural Pathways/physiology , Neurons/physiology , Synaptic Transmission/physiology , Algorithms , Animals , Cells, Cultured , Cerebral Cortex/cytology , Computer Simulation , Electrodes/standards , Electrophysiology/methods , Nerve Net/cytology , Neural Networks, Computer , Neural Pathways/cytology , Neurons/cytology , Nonlinear Dynamics , Rats , Signal Processing, Computer-Assisted , Software , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL