Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(11): e0259912, 2021.
Article in English | MEDLINE | ID: mdl-34847168

ABSTRACT

When successful, the operation of local and international networks of crop seed distribution or "seed systems" ensures farmer access to seed and impacts rural livelihoods and food security. Farmers are both consumers and producers in seed systems and benefit from access to global markets. However, phytosanitary measures and seed purity tests are also needed to maintain seed quality and prevent the spread of costly weeds, pests and diseases, in some countries regulatory controls have been in place since the 1800s. Nevertheless, seed contaminants are internationally implicated in between 7% and 37% of the invasive plant species and many of the agricultural pests and diseases. We assess biosecurity risk across international seed trade networks of forage crops using models of contaminant spread that integrate network connectivity and trade volume. To stochastically model hypothetical contaminants through global seed trade networks, realistic dispersal probabilities were estimated from quarantine weed seed detections and incursions from border security interception data in New Zealand. For our test case we use contaminants linked to the global trade of ryegrass and clover seed. Between 2014 and 2018 only four quarantine weed species (222 species and several genera are on the quarantine schedule) warranting risk mitigation were detected at the border. Quarantine weeds were rare considering that average import volumes were over 190 tonnes for ryegrass and clover, but 105 unregulated contaminant species were allowed in. Ryegrass and clover seed imports each led to one post-border weed incursion response over 20 years. Trade reports revealed complex global seed trade networks spanning >134 (ryegrass) and >110 (clover) countries. Simulations showed contaminants could disperse to as many as 50 (clover) or 80 (ryegrass) countries within 10 time-steps. Risk assessed via network models differed 18% (ryegrass) or 48% (clover) of the time compared to risk assessed on trade volumes. We conclude that biosecurity risk is driven by network position, the number of trading connections and trade volume. Risk mitigation measures could involve the use of more comprehensive lists of regulated species, comprehensive inspection protocols, or the addition of field surveillance at farms where seed is planted.


Subject(s)
Agriculture/methods , Commerce/standards , Seed Bank/trends , Biosecurity/trends , Commerce/trends , Computer Security , Crops, Agricultural/growth & development , Farmers , Farms , Introduced Species , New Zealand , Quarantine , Seeds/growth & development
2.
PLoS One ; 16(8): e0256623, 2021.
Article in English | MEDLINE | ID: mdl-34437599

ABSTRACT

Imports of seeds for sowing are a major pathway for the introduction of contaminant seeds, and many agricultural weeds globally naturalised originally have entered through this pathway. Effective management of this pathway is a significant means of reducing future plant introductions and helps minimise agricultural losses. Using a national border inspection database, we examined the frequency, origin and identity of contaminant seeds within seed for sowing shipments entering New Zealand between 2014-2018. Our analysis looked at 41,610 seed lots across 1,420 crop seed species from over 90 countries. Overall, contamination was rare, occurring in 1.9% of all seed lots. Among the different crop types, the arable category had the lowest percentage of seed lots contaminated (0.5%) and the forage category had the highest (12.6%). Crop seeds Capsicum, Phaseolus and Solanum had the lowest contamination rates (0.0%). Forage crops Medicago (27.3%) and Trifolium (19.8%) had the highest contamination rates. Out of 191 genera recorded as contaminants, Chenopodium was the most common. Regulated quarantine weeds were the rarest contaminant type, only occurring in 0.06% of seed lots. Sorghum halepense was the most common quarantine species and was only found in vegetable seed lots. Vegetable crop seed lots accounted for approximately half of all quarantine species detections, Raphanus sativus being the most contaminated vegetable crop. Larger seed lots were significantly more contaminated and more likely to contain a quarantine species than smaller seed lots. These findings support International Seed Testing Association rules on maximum seed lot weights. Low contamination rates suggest industry practices are effective in minimising contaminant seeds. Considering New Zealand inspects every imported seed lot, utilises a working sample size 5 times larger than International Seed Testing Association rules require, trades crop seed with approximately half of the world's countries and imports thousands of crop seed species, our study provides a unique overview of contaminant seeds that move throughout the seed for sowing system.


Subject(s)
Commerce , Plant Weeds/physiology , Seeds/physiology , Crops, Agricultural/physiology , New Zealand , Species Specificity
3.
Front Plant Sci ; 9: 1580, 2018.
Article in English | MEDLINE | ID: mdl-30483280

ABSTRACT

Vertical transmission of symbiotic Epichloë endophytes from host grasses into progeny seed is the primary mechanism by which the next generation of plants is colonized. This process is often imperfect, resulting in endophyte-free seedlings which may have poor ecological fitness if the endophyte confers protective benefits to its host. In this study, we investigated the influence of host genetics and environment on the vertical transmission of Epichloë festucae var. lolii strain AR37 in the temperate forage grass Lolium perenne. The efficiency of AR37 transmission into the seed of over 500 plant genotypes from five genetically diverse breeding populations was determined. In Populations I-III, which had undergone previous selection for high seed infection by AR37, mean transmission was 88, 93, and 92%, respectively. However, in Populations IV and V, which had not undergone previous selection, mean transmission was 69 and 70%, respectively. The transmission values, together with single-nucleotide polymorphism data obtained using genotyping-by-sequencing for each host, was used to develop a genomic prediction model for AR37 seed transmission. The predictive ability of the model was estimated at r = 0.54. While host genotype contributed greatly to differences in AR37 seed transmission, undefined environmental variables also contributed significantly to seed transmission across different years and geographic locations. There was evidence for a small host genotype-by-environment effect; however this was less pronounced than genotype or environment alone. Analysis of endophyte infection levels in parent plants within Populations I and IV revealed a loss of endophyte infection over time in Population IV only. This population also had lower average tiller infection frequencies than Population I, suggesting that AR37 failed to colonize all the daughter tillers and therefore seeds. However, we also observed that infection of seed by AR37 may fail during or after initiation of floral development from plants where all tillers remained endophyte-infected over time. While the effects of environment and host genotype on fungal endophyte transmission have been evaluated previously, this is the first study that quantifies the relative impacts of host genetics and environment on endophyte vertical transmission.

4.
Theor Appl Genet ; 131(3): 703-720, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29264625

ABSTRACT

KEY MESSAGE: Genomic prediction models for multi-year dry matter yield, via genotyping-by-sequencing in a composite training set, demonstrate potential for genetic gain improvement through within-half sibling family selection. Perennial ryegrass (Lolium perenne L.) is a key source of nutrition for ruminant livestock in temperate environments worldwide. Higher seasonal and annual yield of herbage dry matter (DMY) is a principal breeding objective but the historical realised rate of genetic gain for DMY is modest. Genomic selection was investigated as a tool to enhance the rate of genetic gain. Genotyping-by-sequencing (GBS) was undertaken in a multi-population (MP) training set of five populations, phenotyped as half-sibling (HS) families in five environments over 2 years for mean herbage accumulation (HA), a measure of DMY potential. GBS using the ApeKI enzyme yielded 1.02 million single-nucleotide polymorphism (SNP) markers from a training set of n = 517. MP-based genomic prediction models for HA were effective in all five populations, cross-validation-predictive ability (PA) ranging from 0.07 to 0.43, by trait and target population, and 0.40-0.52 for days-to-heading. Best linear unbiased predictor (BLUP)-based prediction methods, including GBLUP with either a standard or a recently developed (KGD) relatedness estimation, were marginally superior or equal to ridge regression and random forest computational approaches. PA was principally an outcome of SNP modelling genetic relationships between training and validation sets, which may limit application for long-term genomic selection, due to PA decay. However, simulation using data from the training experiment indicated a twofold increase in genetic gain for HA, when applying a prediction model with moderate PA in a single selection cycle, by combining among-HS family selection, based on phenotype, with within-HS family selection using genomic prediction.


Subject(s)
Genotyping Techniques , Lolium/genetics , Genomics , Linkage Disequilibrium , Models, Genetic , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide
5.
Environ Entomol ; 45(1): 101-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26374758

ABSTRACT

Birds and other forms of wildlife are a major issue for airport authorities worldwide, as they can create hazards to operating aircraft. Wildlife "strikes," the majority caused by birds, can cause damage to operating aircraft and in severe cases lead to a loss of human life. Many airfields contain large areas of ground cover herbage alongside their runways that consist of mixtures of grasses, legumes, and weeds that can harbor many invertebrates. Many airfields use insecticides to control insect populations; however, mounting pressure from regional councils and water boards aim to reduce this practice due to ground water runoff and contamination concerns. Avanex Unique Endophyte Technology, a product specifically developed to reduce the attractiveness of airports and surrounding areas to birds, is based on a novel association between a selected strain of Epichloë endophyte and a turf-type tall fescue cultivar. This grass-endophyte association acts through a direct mechanism whereby a negative response in birds is created through taste aversion and postingestion feedback as well as an indirect mechanism by deterring many invertebrates, a food source of many bird species.


Subject(s)
Endophytes , Epichloe/physiology , Insecta/microbiology , Pest Control, Biological , Poaceae/microbiology , Airports , Animals , New Zealand
SELECTION OF CITATIONS
SEARCH DETAIL