Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Rom J Morphol Embryol ; 61(1): 189-198, 2020.
Article in English | MEDLINE | ID: mdl-32747910

ABSTRACT

In this study, we examined the effects of injectable platelet-rich fibrin (iPRF) on proliferation and osteodifferentiation in mesenchymal stem cells (MSCs) isolated from human gingiva. Gingival MSCs (gMSCs) were grown in experimental culture media with different concentrations of iPRF [5%, 10%, and replacement of fetal calf serum (FCS) in the standard media with 10% iPRF-10% iPRF-FCS]. Immunophenotyping of gMSCs was performed after seven days by flow cytometry, and their proliferation was examined after three and seven days using the Cell Counting Kit-8 method. After 14 days in culture, spontaneous osteogenic differentiation of gMSCs was evaluated via real-time polymerase chain reaction. All gMSCs were positive for cluster of differentiation (CD) 105, CD73, CD90, and CD44, and negative for CD34∕45, CD14, CD79a, and human leukocyte antigen, DR isotype (HLA-DR). Reduced expression of some surface antigens was observed in the gMSCs grown in 10% iPRF-FCS medium compared to the other groups. After three days, gMSCs grown in 10% iPRF had proliferated significantly less than the other groups. After seven days, proliferation was significantly higher in the 5% iPRF cells compared to the control, while proliferation in the 10% iPRF and 10% iPRF-FCS groups was significantly lower. No spontaneous osteogenic differentiation was observed in the presence of iPRF, as observed by low runt-related transcription factor 2 (RUNX2) expression. Some expression of secreted protein acidic and cysteine rich (SPARC) and collagen 1 alpha (COL1A) was observed for all the gMSCs regardless of the culture medium composition. gMSCs grown in 10% iPRF had significantly lower SPARC expression. In conclusion, 5% iPRF stimulated gMSC proliferation, and an excessively high concentration of iPRF can impair osteogenic induction.


Subject(s)
Gingiva/metabolism , Mesenchymal Stem Cells/metabolism , Platelet-Rich Fibrin/metabolism , Cell Proliferation , Humans
2.
Rom J Morphol Embryol ; 59(2): 455-467, 2018.
Article in English | MEDLINE | ID: mdl-30173249

ABSTRACT

Vascular endothelial growth factor (VEGF) represents a growth factor with important pro-angiogenic activity, having a mitogenic and an anti-apoptotic effect on endothelial cells, increasing the vascular permeability, promoting cell migration, etc. Due to these effects, it actively contributes in regulating the normal and pathological angiogenic processes. In humans, the VEGF family is composed of several members: VEGF-A (which has different isoforms), VEGF-B, VEGF-C, VEGF-D, VEGF-E (viral VEGF), VEGF-F (snake venom VEGF), placenta growth factor (PlGF), and, recently, to this family has been added endocrine gland-derived vascular endothelial growth factor (EG-VEGF). VEGF binds to tyrosine kinase cell receptors (VEGFRs): VEGFR-1 [Fms-like tyrosine kinase 1 (Flt-1)], VEGFR-2 [kinase insert domain receptor (KDR) in human; fetal liver kinase 1 (Flk-1) in mouse] and VEGFR-3 [Fms-like tyrosine kinase 4 (Flt-4)]. While VEGFR-1 and VEGFR-2 are expressed predominantly on vascular endothelial cells, VEGFR-3 is expressed especially on lymphatic endothelial cells. VEGFR-2 has the strongest pro-angiogenic activity and a higher tyrosine kinase activity than VEGFR-1. Endothelial cells also express co-receptors, such as neuropilin-1 (NP-1) and neuropilin-2 (NP-2), which modulate tyrosine kinase receptor activity. Both VEGF and VEGFRs are expressed not only on endothelial cells, but also on non-endothelial cells. This article aims to highlight the most recent data referring to the VEGF family and its receptors, as well as its implications in the angiogenesis process. At present, blocking angiogenesis in cancer or in other pathological processes, using anti-VEGF and anti-VEGFRs therapies, is considered to be extremely important.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Neoplasms/blood supply , Neoplasms/drug therapy , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism , Animals , Humans , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL