Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Air Qual Atmos Health ; 15: 311-319, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35173822

ABSTRACT

Exposure to fine particulate matter (PM2.5) is associated with asthma development as well as asthma exacerbation in children. PM2.5 can be directly emitted or can form in the atmosphere from pollutant precursors. PM2.5 emitted and formed in the atmosphere is influenced by meteorology; future changes in climate may alter the concentration and distribution of PM2.5. Our aim is to estimate the future burden of climate change and PM2.5 on new and exacerbated cases of childhood asthma. Projected concentrations of PM2.5 are based on the Geophysical Fluid Dynamics Laboratory Coupled Model version 3 climate model, the Representative Concentration Pathway 8.5 greenhouse gas scenario, and two air pollution emissions datasets: a 2011 emissions dataset and a 2040 emissions dataset that reflects substantial reductions in emissions of PM2.5 as compared to the 2011 inventory. We estimate additional PM2.5-attributable asthma as well as PM2.5-attributable albuterol inhaler use for four future years (2030, 2050, 2075, and 2095) relative to the year 2000. Exacerbations, regardless of the trigger, are counted as attributable to PM2.5 if the incident disease is attributable to PM2.5. We project 38 thousand (95% CI 36, 39 thousand) additional PM2.5-attributable incident childhood asthma cases and 29 million (95% CI 27, 31 million) additional PM2.5-attributable albuterol inhaler uses per year in 2030, increasing to 200 thousand (95% CI 190, 210 thousand) additional incident cases and 160 million (95% CI 150, 160 million) inhaler uses per year by 2095 relative to 2000 under the 2011 emissions dataset. These additional PM2.5-attributable incident asthma cases and albuterol inhaler use would cost billions of additional U.S. dollars per year by the late century. These outcomes could be mitigated by reducing air pollution emissions.

2.
Int J Environ Res Public Health ; 10(9): 4039-59, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-23999551

ABSTRACT

Formally evaluating how specific policy measures influence environmental justice is challenging, especially in the context of regulatory analyses in which quantitative comparisons are the norm. However, there is a large literature on developing and applying quantitative measures of health inequality in other settings, and these measures may be applicable to environmental regulatory analyses. In this paper, we provide information to assist policy decision makers in determining the viability of using measures of health inequality in the context of environmental regulatory analyses. We conclude that quantification of the distribution of inequalities in health outcomes across social groups of concern, considering both within-group and between-group comparisons, would be consistent with both the structure of regulatory analysis and the core definition of environmental justice. Appropriate application of inequality indicators requires thorough characterization of the baseline distribution of exposures and risks, leveraging data generally available within regulatory analyses. Multiple inequality indicators may be applicable to regulatory analyses, and the choice among indicators should be based on explicit value judgments regarding the dimensions of environmental justice of greatest interest.


Subject(s)
Environmental Policy , Social Justice , Humans , Models, Theoretical , Socioeconomic Factors
3.
Risk Anal ; 32(12): 2133-51, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22571466

ABSTRACT

The monetized value of avoided premature mortality typically dominates the calculated benefits of air pollution regulations; therefore, characterization of the uncertainty surrounding these estimates is key to good policymaking. Formal expert judgment elicitation methods are one means of characterizing this uncertainty. They have been applied to characterize uncertainty in the mortality concentration-response function, but have yet to be used to characterize uncertainty in the economic values placed on avoided mortality. We report the findings of a pilot expert judgment study for Health Canada designed to elicit quantitative probabilistic judgments of uncertainties in Value-per-Statistical-Life (VSL) estimates for use in an air pollution context. The two-stage elicitation addressed uncertainties in both a base case VSL for a reduction in mortality risk from traumatic accidents and in benefits transfer-related adjustments to the base case for an air quality application (e.g., adjustments for age, income, and health status). Results for each expert were integrated to develop example quantitative probabilistic uncertainty distributions for VSL that could be incorporated into air quality models.


Subject(s)
Air Pollution , Canada , Humans , Uncertainty
4.
Risk Anal ; 31(6): 908-22, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21615761

ABSTRACT

The U.S. Environmental Protection Agency undertook a case study in the Detroit metropolitan area to test the viability of a new multipollutant risk-based (MP/RB) approach to air quality management, informed by spatially resolved air quality, population, and baseline health data. The case study demonstrated that the MP/RB approach approximately doubled the human health benefits achieved by the traditional approach while increasing cost less than 20%--moving closer to the objective of Executive Order 12866 to maximize net benefits. Less well understood is how the distribution of health benefits from the MP/RB and traditional strategies affect the existing inequalities in air-pollution-related risks in Detroit. In this article, we identify Detroit populations that may be both most susceptible to air pollution health impacts (based on local-scale baseline health data) and most vulnerable to air pollution (based on fine-scale PM(2.5) air quality modeling and socioeconomic characteristics). Using these susceptible/vulnerable subpopulation profiles, we assess the relative impacts of each control strategy on risk inequality, applying the Atkinson Index (AI) to quantify health risk inequality at baseline and with either risk management approach. We find that the MP/RB approach delivers greater air quality improvements among these subpopulations while also generating substantial benefits among lower-risk populations. Applying the AI, we confirm that the MP/RB strategy yields less PM(2.5) mortality and asthma hospitalization risk inequality than the traditional approach. We demonstrate the value of this approach to policymakers as they develop cost-effective air quality management plans that maximize risk reduction while minimizing health inequality.


Subject(s)
Air Pollutants , Environmental Policy , Social Justice , Air Pollutants/toxicity , Humans , Particle Size
5.
Environ Health Perspect ; 119(5): 607-14, 2011 May.
Article in English | MEDLINE | ID: mdl-21220222

ABSTRACT

BACKGROUND: The U.S. Environmental Protection Agency (U.S. EPA) has estimated the neurological benefits of reductions in prenatal methylmercury (MeHg) exposure in past assessments of rules controlling mercury (Hg) emissions. A growing body of evidence suggests that MeHg exposure can also lead to increased risks of adverse cardiovascular impacts in exposed populations. DATA EXTRACTION: The U.S. EPA assembled the authors of this article to participate in a workshop, where we reviewed the current science concerning cardiovascular health effects of MeHg exposure via fish and seafood consumption and provided recommendations concerning whether cardiovascular health effects should be included in future Hg regulatory impact analyses. DATA SYNTHESIS: We found the body of evidence exploring the link between MeHg and acute myocardial infarction (MI) to be sufficiently strong to support its inclusion in future benefits analyses, based both on direct epidemiological evidence of an MeHg-MI link and on MeHg's association with intermediary impacts that contribute to MI risk. Although additional research in this area would be beneficial to further clarify key characteristics of this relationship and the biological mechanisms that underlie it, we consider the current epidemiological literature sufficiently robust to support the development of a dose- response function. CONCLUSIONS: We recommend the development of a dose- response function relating MeHg exposures with MIs for use in regulatory benefits analyses of future rules targeting Hg air emissions.


Subject(s)
Cardiovascular System/drug effects , Methylmercury Compounds/toxicity , Humans , Myocardial Infarction/chemically induced , Myocardial Infarction/epidemiology , United States , United States Environmental Protection Agency
6.
Environ Sci Technol ; 42(7): 2268-74, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18504952

ABSTRACT

In this paper, we present findings from a multiyear expert judgment study that comprehensively characterizes uncertainty in estimates of mortality reductions associated with decreases in fine particulate matter (PM(2.5)) in the U.S. Appropriate characterization of uncertainty is critical because mortality-related benefits represent up to 90% of the monetized benefits reported in the Environmental Protection Agency's (EPA's) analyses of proposed air regulations. Numerous epidemiological and toxicological studies have evaluated the PM(2.5)-mortality association and investigated issues that may contribute to uncertainty in the concentration-response (C-R) function, such as exposure misclassification and potential confounding from other pollutant exposures. EPA's current uncertainty analysis methods rely largely on standard errors in published studies. However, no one study can capture the full suite of issues that arise in quantifying the C-R relationship. Therefore, EPA has applied state-of-the-art expert judgment elicitation techniques to develop probabilistic uncertainty distributions that reflect the broader array of uncertainties in the C-R relationship. These distributions, elicited from 12 of the world's leading experts on this issue, suggest both potentially larger central estimates of mortality reductions for decreases in long-term PM(2.5) exposure in the U.S. and a wider distribution of uncertainty than currently employed in EPA analyses.


Subject(s)
Air Pollutants/toxicity , Environmental Exposure , Mortality , Particulate Matter/toxicity , Air Pollutants/standards , Humans , Particle Size , Particulate Matter/standards , United States/epidemiology , United States Environmental Protection Agency
SELECTION OF CITATIONS
SEARCH DETAIL
...