Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Abdom Radiol (NY) ; 48(12): 3778-3779, 2023 12.
Article in English | MEDLINE | ID: mdl-37787961
2.
Cancers (Basel) ; 15(20)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37894455

ABSTRACT

In this prospective study, 117 female patients (mean age = 53 years) with 127 histologically proven breast cancer lesions (lymph node (LN) positive = 85, LN negative = 42) underwent simultaneous 18F-FDG PET/MRI of the breast. Quantitative parameters were calculated from dynamic contrast-enhanced (DCE) imaging (tumor Mean Transit Time, Volume Distribution, Plasma Flow), diffusion-weighted imaging (DWI) (tumor ADCmean), and PET (tumor SUVmax, mean and minimum, SUVmean of ipsilateral breast parenchyma). Manual whole-lesion segmentation was also performed on DCE, T2-weighted, DWI, and PET images, and radiomic features were extracted. The dataset was divided into a training (70%) and a test set (30%). Multi-step feature selection was performed, and a support vector machine classifier was trained and tested for predicting axillary LN status. 13 radiomic features from DCE, DWI, T2-weighted, and PET images were selected for model building. The classifier obtained an accuracy of 79.8 (AUC = 0.798) in the training set and 78.6% (AUC = 0.839), with sensitivity and specificity of 67.9% and 100%, respectively, in the test set. A machine learning-based radiomics model comprising 18F-FDG PET/MRI radiomic features extracted from the primary breast cancer lesions allows high accuracy in non-invasive identification of axillary LN metastasis.

3.
Eur J Radiol ; 168: 111116, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37801998

ABSTRACT

PURPOSE: To build and validate a predictive model of placental accreta spectrum (PAS) in patients with placenta previa (PP) combining clinical risk factors (CRF) with US and MRI signs. METHOD: Our retrospective study included patients with PP from two institutions. All patients underwent US and MRI examinations for suspicion of PAS. CRF consisting of maternal age, cesarean section number, smoking and hypertension were retrieved. US and MRI signs suggestive of PAS were evaluated. Logistic regression analysis was performed to identify CRF and/or US and MRI signs associated with PAS considering histology as the reference standard. A nomogram was created using significant CRF and imaging signs at multivariate analysis, and its diagnostic accuracy was measured using the area under the binomial ROC curve (AUC), and the cut-off point was determined by Youden's J statistic. RESULTS: A total of 171 patients were enrolled from two institutions. Independent predictors of PAS included in the nomogram were: 1) smoking and number of previous CS among CRF; 2) loss of the retroplacental clear space at US; 3) intraplacental dark bands, focal interruption of the myometrial border and placental bulging at MRI. A PAS-prediction nomogram was built including these parameters and an optimal cut-off of 14.5 points was identified, showing the highest sensitivity (91%) and specificity (88%) with an AUC value of 0.95 (AUC of 0.80 in the external validation cohort). CONCLUSION: A nomogram-based model combining CRF with US and MRI signs might help to predict PAS in PP patients, with MRI contributing more than US as imaging evaluation.


Subject(s)
Placenta Accreta , Placenta Previa , Pregnancy , Humans , Female , Placenta Accreta/diagnostic imaging , Placenta Accreta/pathology , Placenta Previa/diagnostic imaging , Placenta/pathology , Retrospective Studies , Cesarean Section , Magnetic Resonance Imaging/methods
4.
Front Oncol ; 13: 1260469, 2023.
Article in English | MEDLINE | ID: mdl-37637044
5.
Abdom Radiol (NY) ; 48(10): 3207-3215, 2023 10.
Article in English | MEDLINE | ID: mdl-37439841

ABSTRACT

PURPOSE: To retrospectively evaluate the performance of different manual segmentation methods of placenta MR images for predicting Placenta Accreta Spectrum (PAS) disorders in patients with placenta previa (PP) using a Machine Learning (ML) Radiomics analysis. METHODS: 64 patients (n=41 with PAS and n= 23 without PAS) with PP who underwent MRI examination for suspicion of PAS were retrospectively selected. All MRI examinations were acquired on a 1.5 T using T2-weighted (T2w) sequences on axial, sagittal and coronal planes. Ten different manual segmentation methods were performed on sagittal placental T2-weighted images obtaining five sets of 2D regions of interest (ROIs) and five sets of 3D volumes of interest (VOIs) from each patient. In detail, ROIs and VOIs were positioned on the following areas: placental tissue, retroplacental myometrium, cervix, placenta with underneath myometrium, placenta with underneath myometrium and cervix. For feature stability testing, the same process was repeated on 30 randomly selected placental MRI examinations by two additional radiologists, working independently and blinded to the original segmentation. Radiomic features were extracted from all available ROIs and VOIs. 100 iterations of 5-fold cross-validation with nested feature selection, based on recursive feature elimination, were subsequently run on each ROI/VOI to identify the best-performing method to classify instances correctly. RESULTS: Among the segmentation methods, the best performance in predicting PAS was obtained by the VOIs covering the retroplacental myometrium (Mean validation score: 0.761, standard deviation: 0.116). CONCLUSION: Our preliminary results show that the VOI including the retroplacental myometrium using T2w images seems to be the best method when segmenting images for the development of ML radiomics predictive models to identify PAS in patients with PP.


Subject(s)
Placenta Accreta , Placenta Previa , Pregnancy , Humans , Female , Placenta , Retrospective Studies , Magnetic Resonance Imaging/methods
6.
PET Clin ; 18(4): 567-575, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37336693

ABSTRACT

New challenges are currently faced by clinical and surgical oncologists in the management of patients with breast cancer, mainly related to the need for molecular and prognostic data. Recent technological advances in diagnostic imaging and informatics have led to the introduction of functional imaging modalities, such as hybrid PET/MR imaging, and artificial intelligence (AI) software, aimed at the extraction of quantitative radiomics data, which may reflect tumor biology and behavior. In this article, the most recent applications of radiomics and AI to PET/MR imaging are described to address the new needs of clinical and surgical oncology.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Artificial Intelligence , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Positron-Emission Tomography
8.
Bioengineering (Basel) ; 10(3)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36978697

ABSTRACT

Kasai portoenterostomy (KP) plays a crucial role in the treatment of biliary atresia (BA). The aim is to correlate MRI quantitative findings of native liver survivor BA patients after KP with a medical outcome. Thirty patients were classified as having ideal medical outcomes (Group 1; n = 11) if laboratory parameter values were in the normal range and there was no evidence of chronic liver disease complications; otherwise, they were classified as having nonideal medical outcomes (Group 2; n = 19). Liver and spleen volumes, portal vein diameter, liver mean, and maximum and minimum ADC values were measured; similarly, ADC and T2-weighted textural parameters were obtained using ROI analysis. The liver volume was significantly (p = 0.007) lower in Group 2 than in Group 1 (954.88 ± 218.31 cm3 vs. 1140.94 ± 134.62 cm3); conversely, the spleen volume was significantly (p < 0.001) higher (555.49 ± 263.92 cm3 vs. 231.83 ± 70.97 cm3). No differences were found in the portal vein diameter, liver ADC values, or ADC and T2-weighted textural parameters. In conclusion, significant quantitative morpho-volumetric liver and spleen abnormalities occurred in BA patients with nonideal medical outcomes after KP, but no significant microstructural liver abnormalities detectable by ADC values and ADC and T2-weighted textural parameters were found between the groups.

9.
Cancers (Basel) ; 15(6)2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36980724

ABSTRACT

AIM: To non-invasively predict Oncotype DX recurrence scores (ODXRS) in patients with ER+ HER2- invasive breast cancer (IBC) using dynamic contrast-enhanced (DCE) MRI-derived radiomics features extracted from primary tumor lesions and a ML algorithm. MATERIALS AND METHODS: Pre-operative DCE-MRI of patients with IBC, no history of neoadjuvant therapy prior to MRI, and for which the ODXRS was available, were retrospectively selected from a public dataset. ODXRS was obtained on histological tumor samples and considered as positive if greater than 16 and 26 in patients aged under and over 50 years, respectively. Tumor lesions were manually annotated by three independent operators on DCE-MRI images through 3D ROIs positioning. Radiomic features were therefore extracted and selected using multistep feature selection process. A logistic regression ML classifier was then employed for the prediction of ODXRS. RESULTS: 248 patients were included, of which 87 with positive ODXRS. 166 (66%) patients were grouped in the training set, while 82 (33%) in the test set. A total of 1288 features was extracted. Of these, 1244 were excluded as 771, 82 and 391 were excluded as not stable (n = 771), not variant (n = 82), and highly intercorrelated (n = 391), respectively. After the use of recursive feature elimination with logistic regression estimator and polynomial transformation, 92 features were finally selected. In the training set, the logistic regression classifier obtained an overall mean accuracy of 60%. In the test set, the accuracy of the ML classifier was 63%, with a sensitivity of 80%, specificity of 43%, and AUC of 66%. CONCLUSIONS: Radiomics and ML applied to pre-operative DCE-MRI in patients with IBC showed promises for the non-invasive prediction of ODXRS, aiding in selecting patients who will benefit from NAC.

10.
Sensors (Basel) ; 23(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36772592

ABSTRACT

Breast Cancer (BC) is the most common cancer among women worldwide and is characterized by intra- and inter-tumor heterogeneity that strongly contributes towards its poor prognosis. The Estrogen Receptor (ER), Progesterone Receptor (PR), Human Epidermal Growth Factor Receptor 2 (HER2), and Ki67 antigen are the most examined markers depicting BC heterogeneity and have been shown to have a strong impact on BC prognosis. Radiomics can noninvasively predict BC heterogeneity through the quantitative evaluation of medical images, such as Magnetic Resonance Imaging (MRI), which has become increasingly important in the detection and characterization of BC. However, the lack of comprehensive BC datasets in terms of molecular outcomes and MRI modalities, and the absence of a general methodology to build and compare feature selection approaches and predictive models, limit the routine use of radiomics in the BC clinical practice. In this work, a new radiomic approach based on a two-step feature selection process was proposed to build predictors for ER, PR, HER2, and Ki67 markers. An in-house dataset was used, containing 92 multiparametric MRIs of patients with histologically proven BC and all four relevant biomarkers available. Thousands of radiomic features were extracted from post-contrast and subtracted Dynamic Contrast-Enanched (DCE) MRI images, Apparent Diffusion Coefficient (ADC) maps, and T2-weighted (T2) images. The two-step feature selection approach was used to identify significant radiomic features properly and then to build the final prediction models. They showed remarkable results in terms of F1-score for all the biomarkers: 84%, 63%, 90%, and 72% for ER, HER2, Ki67, and PR, respectively. When possible, the models were validated on the TCGA/TCIA Breast Cancer dataset, returning promising results (F1-score = 88% for the ER+/ER- classification task). The developed approach efficiently characterized BC heterogeneity according to the examined molecular biomarkers.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Ki-67 Antigen , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Prognosis , Receptors, Estrogen
11.
Cancers (Basel) ; 15(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36672470

ABSTRACT

The widespread use of cross-sectional imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), in the evaluation of abdominal disorders has significantly increased the number of incidentally detected adrenal abnormalities, particularly adrenal masses [...].

13.
J Magn Reson Imaging ; 57(2): 370-386, 2023 02.
Article in English | MEDLINE | ID: mdl-36165348

ABSTRACT

The recent introduction of hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) as a promising imaging modality for breast cancer assessment has prompted fervent research activity on its clinical applications. The current knowledge regarding the possible clinical applications of hybrid PET/MRI is constantly evolving, thanks to the development and clinical availability of hybrid scanners, the development of new PET tracers and the rise of artificial intelligence (AI) techniques. In this state-of-the-art review on the use of hybrid breast PET/MRI, the most promising advanced MRI techniques (diffusion-weighted imaging, dynamic contrast-enhanced MRI, magnetic resonance spectroscopy, and chemical exchange saturation transfer) are discussed. Current and experimental PET tracers (18 F-FDG, 18 F-NaF, choline, 18 F-FES, 18 F-FES, 89 Zr-trastuzumab, choline derivatives, 18 F-FLT, and 68 Ga-FAPI-46) are described in order to provide an overview on their molecular mechanisms of action and corresponding clinical applications. New perspectives represented by the use of radiomics and AI techniques are discussed. Furthermore, the current strengths and limitations of hybrid PET/MRI in the real world are highlighted. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Humans , Female , Positron-Emission Tomography/methods , Magnetic Resonance Imaging/methods , Fluorodeoxyglucose F18 , Radiopharmaceuticals , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Magnetic Resonance Spectroscopy , Multimodal Imaging/methods , Choline
14.
Insights Imaging ; 13(1): 198, 2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36528678

ABSTRACT

BACKGROUND: The clinical role of perfusion-weighted MRI (PWI) in head and neck squamous cell carcinoma (HNSCC) remains to be defined. The aim of this study was to provide evidence-based recommendations for the use of PWI sequence in HNSCC with regard to clinical indications and acquisition parameters. METHODS: Public databases were searched, and selected papers evaluated applying the Oxford criteria 2011. A questionnaire was prepared including statements on clinical indications of PWI as well as its acquisition technique and submitted to selected panelists who worked in anonymity using a modified Delphi approach. Each panelist was asked to rate each statement using a 7-point Likert scale (1 = strongly disagree, 7 = strongly agree). Statements with scores equal or inferior to 5 assigned by at least two panelists were revised and re-submitted for the subsequent Delphi round to reach a final consensus. RESULTS: Two Delphi rounds were conducted. The final questionnaire consisted of 6 statements on clinical indications of PWI and 9 statements on the acquisition technique of PWI. Four of 19 (21%) statements obtained scores equal or inferior to 5 by two panelists, all dealing with clinical indications. The Delphi process was considered concluded as reasons entered by panelists for lower scores were mainly related to the lack of robust evidence, so that no further modifications were suggested. CONCLUSIONS: Evidence-based recommendations on the use of PWI have been provided by an independent panel of experts worldwide, encouraging a standardized use of PWI across university and research centers to produce more robust evidence.

15.
Cancers (Basel) ; 14(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36230793

ABSTRACT

Imaging plays a crucial role in the management of oncologic patients, from the initial diagnosis to staging and treatment response monitoring. Recently, it has been suggested that its importance could be further increased by accessing a new layer of previously hidden quantitative data at the pixel level. Using a multi-step process, radiomics extracts potential biomarkers from medical images that could power decision support tools. Despite the growing interest and rising number of research articles being published, radiomics is still far from fulfilling its promise of guiding oncologic imaging toward personalized medicine. This is, at least partly, due to the heterogeneous methodological quality in radiomic research, caused by the complexity of the analysis pipelines. In this review, we aim to disentangle this complexity with a stepwise approach. Specifically, we focus on challenges to face during image preprocessing and segmentation, how to handle imbalanced classes and avoid information leaks, as well as strategies for the proper validation of findings.

16.
Cancers (Basel) ; 14(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36010936

ABSTRACT

PURPOSE: To investigate whether a machine learning (ML)-based radiomics model applied to 18F-FDG PET/MRI is effective in molecular subtyping of breast cancer (BC) and specifically in discriminating triple negative (TN) from other molecular subtypes of BC. METHODS: Eighty-six patients with 98 BC lesions (Luminal A = 10, Luminal B = 51, HER2+ = 12, TN = 25) were included and underwent simultaneous 18F-FDG PET/MRI of the breast. A 3D segmentation of BC lesion was performed on T2w, DCE, DWI and PET images. Quantitative diffusion and metabolic parameters were calculated and radiomics features extracted. Data were selected using the LASSO regression and used by a fine gaussian support vector machine (SVM) classifier with a 5-fold cross validation for identification of TNBC lesions. RESULTS: Eight radiomics models were built based on different combinations of quantitative parameters and/or radiomic features. The best performance (AUROC 0.887, accuracy 82.8%, sensitivity 79.7%, specificity 86%, PPV 85.3%, NPV 80.8%) was found for the model combining first order, neighborhood gray level dependence matrix and size zone matrix-based radiomics features extracted from ADC and PET images. CONCLUSION: A ML-based radiomics model applied to 18F-FDG PET/MRI is able to non-invasively discriminate TNBC lesions from other BC molecular subtypes with high accuracy. In a future perspective, a "virtual biopsy" might be performed with radiomics signatures.

17.
Eur J Radiol ; 155: 110497, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36030661

ABSTRACT

PURPOSE: Ultrasound and magnetic resonance imaging are the imaging modalities of choice for placenta accrete spectrum (PAS) disorders assessment. Radiomics could further increase the value of medical images and allow to overcome the limitations linked to their visual assessment. Aim of this systematic review was to identify and appraise the methodological quality of radiomics studies focused PAS disorders applications. METHOD: Three online databases (PubMed, Scopus and Web of Science) were searched to identify original research articles on human subjects published in English. For the qualitative synthesis of results, data regarding study design (e.g., retrospective or prospective), purpose, patient population (e.g., sample size), imaging modalities and radiomics pipelines (e.g., segmentation and feature extraction strategy) were collected. The appraisal of methodological quality was performed using the Radiomics Quality Score (RQS). RESULTS: 10 articles were finally included and analyzed. All were retrospective and MRI-powered. The majority included more than 100 patients (6/10). Four were prognostic (focused on either the prediction of bleeding volume or the prediction of needed management) while six diagnostic (PAS vs not PAS classification) studies. The median RQS was 8, with maximum and minimum respectively equal to 17/36 and - 6/36. Major methodological concerns were the lack of feature stability to multiple segmentation testing and poor data openness. CONCLUSIONS: Radiomics studies focused on PAS disorders showed a heterogeneous methodological quality, overall lower than desirable. Furthermore, many relevant research questions remain unexplored. More robust investigations are needed to foster advancements in the field and possibly clinical translation.


Subject(s)
Placenta Accreta , Female , Humans , Magnetic Resonance Imaging/methods , Placenta Accreta/diagnostic imaging , Pregnancy , Prognosis , Prospective Studies , Retrospective Studies
18.
Cancers (Basel) ; 14(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35740623

ABSTRACT

Background: Hybrid positron emission tomography (PET)/magnetic resonance (MR) is an emerging imaging modality with great potential to provide complementary data acquired at the same time, under the same physiological conditions. The aim of this study was to evaluate the prognostic value of hybrid 18F-fluorodeoxyglucose (FDG) PET/MR in patients with differentiated thyroid cancer (DTC) who underwent total thyroidectomy and radioactive iodine therapy for suspicion of disease relapse. Methods: Between November 2015 and February 2017, 55 patients underwent hybrid 18F-FDG PET/MR. Assessment of positive MR was made considering all sequences in terms of malignancy based on the morphological T2-weighted features and the presence of restricted diffusivity on diffusion-weighted imaging images and both needed to be positive on the same lesion. Both foci with abnormal 18F-FDG uptake, which corresponded to tissue abnormalities on the MR, and tracer accumulation, which did not correspond to normal morphological structures, were considered positive. Results: During follow-up (mean 42 ± 27 months), 29 patients (53%) had disease recurrence. In the Cox univariate regression analysis age, serum Tg level ≥ 2 ng/mL, positive short tau inversion recovery (STIR), and positive PET were significant predictors of DTC recurrence. Kaplan−Meier survival analyses showed that patients with Tg ≥ 2 ng/mL had poorer outcomes compared to those with serum Tg level < 2 ng/mL (p < 0.05). Similarly, patients with positive STIR and positive PET had a worst outcome compared to those with negative STIR (p < 0.05) and negative PET (p < 0.005). Survival analysis performed in the subgroup of 36 subjects with Tg level ≥ 2 ng/mL revealed that patients with positive PET had a worst outcome compared to those with negative PET (p < 0.05). Conclusions: Age, serum Tg level ≥ 2 ng/mL, positive STIR, and positive 18F-FDG PET were significant predictors of DTC recurrence. However, the serum Tg level was the only independent predictor of DTC. Hybrid PET/MR imaging may have the potential to improve the information content of one modality with the other and would offer new opportunities in patients with DTC. Thus, further studies in a larger patient population are needed to understand the additional value of 18F-FDG PET/MR in patients with DTC.

19.
J Ultrasound ; 25(4): 965-971, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35507248

ABSTRACT

AIMS: lymphadenopathy can occur after COVID-19 vaccination and when encountered at ultrasound examinations performed for other reasons might pose a diagnostic challenge. Purpose of the study was to evaluate the incidence, course and ultrasound imaging features of vaccine-induced lymphadenopathy. METHODS: 89 healthy volunteers (median age 30, 76 females) were prospectively enrolled. Vaccine-related clinical side effects (e.g., fever, fatigue, palpable or painful lymphadenopathy) were recorded. Participants underwent bilateral axillary, supraclavicular and cervical lymph node stations ultrasound 1-4 weeks after the second dose and then again after 4-12 weeks in those who showed lymphadenopathy at the first ultrasound. B-mode, color-Doppler assessment, and shear-wave elastography (SWE) evaluation were performed. The correlation between lymphadenopathy and vaccine-related side effects was assessed using the Fisher's exact test. RESULTS: Post-vaccine lymphadenopathy were found in 69/89 (78%) participants (37 single and 32 multiple lymphadenopathy). Among them, 60 presented vaccine-related side effects, but no statistically significant difference was observed between post-vaccine side effect and lymphadenopathy. Ultrasound features of vaccine-related lymphadenopathy consisted of absence of fatty hilum, round shape and diffuse or asymmetric cortical thickness (median cortical thickness of 5 mm). Vascular signal was mainly found to be increased, localized in both central and peripheral regions. SWE showed a soft cortical consistence in all cases (median value 11 Kpa). At follow-up, lymph-node morphology was completely restored in most cases (54/69, 78%) and in no case lymphadenopathy had worsened. CONCLUSION: A high incidence of vaccine-induced lymphadenopathy was found in a population of healthy subjects, with nearly complete regression within 4-12 weeks.


Subject(s)
COVID-19 Vaccines , COVID-19 , Lymphadenopathy , Female , Humans , COVID-19 Vaccines/adverse effects , Incidence , Lymphadenopathy/chemically induced , Lymphadenopathy/diagnostic imaging , Lymphadenopathy/epidemiology , Prospective Studies , Ultrasonography
20.
Diagnostics (Basel) ; 12(3)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35328133

ABSTRACT

In this study, we aimed to systematically review the current literature on radiomics applied to cross-sectional adrenal imaging and assess its methodological quality. Scopus, PubMed and Web of Science were searched to identify original research articles investigating radiomics applications on cross-sectional adrenal imaging (search end date February 2021). For qualitative synthesis, details regarding study design, aim, sample size and imaging modality were recorded as well as those regarding the radiomics pipeline (e.g., segmentation and feature extraction strategy). The methodological quality of each study was evaluated using the radiomics quality score (RQS). After duplicate removal and selection criteria application, 25 full-text articles were included and evaluated. All were retrospective studies, mostly based on CT images (17/25, 68%), with manual (19/25, 76%) and two-dimensional segmentation (13/25, 52%) being preferred. Machine learning was paired to radiomics in about half of the studies (12/25, 48%). The median total and percentage RQS scores were 2 (interquartile range, IQR = -5-8) and 6% (IQR = 0-22%), respectively. The highest and lowest scores registered were 12/36 (33%) and -5/36 (0%). The most critical issues were the absence of proper feature selection, the lack of appropriate model validation and poor data openness. The methodological quality of radiomics studies on adrenal cross-sectional imaging is heterogeneous and lower than desirable. Efforts toward building higher quality evidence are essential to facilitate the future translation into clinical practice.

SELECTION OF CITATIONS
SEARCH DETAIL
...