Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
ISME Commun ; 4(1): ycae004, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38425478

ABSTRACT

The osmotrophic uptake of dissolved organic compounds in the ocean is considered to be dominated by heterotrophic prokaryotes, whereas the role of planktonic eukaryotes is still unclear. We explored the capacity of natural eukaryotic plankton communities to incorporate the synthetic amino acid L-homopropargylglycine (HPG, analogue of methionine) using biorthogonal noncanonical amino acid tagging (BONCAT), and we compared it with prokaryotic HPG use throughout a 9-day survey in the NW Mediterranean. BONCAT allows to fluorescently identify translationally active cells, but it has never been applied to natural eukaryotic communities. We found a large diversity of photosynthetic and heterotrophic eukaryotes incorporating HPG into proteins, with dinoflagellates and diatoms showing the highest percentages of BONCAT-labelled cells (49 ± 25% and 52 ± 15%, respectively). Among them, pennate diatoms exhibited higher HPG incorporation in the afternoon than in the morning, whereas small (≤5 µm) photosynthetic eukaryotes and heterotrophic nanoeukaryotes showed the opposite pattern. Centric diatoms (e.g. Chaetoceros, Thalassiosira, and Lauderia spp.) dominated the eukaryotic HPG incorporation due to their high abundances and large sizes, accounting for up to 86% of the eukaryotic BONCAT signal and strongly correlating with bulk 3H-leucine uptake rates. When including prokaryotes, eukaryotes were estimated to account for 19-31% of the bulk BONCAT signal. Our results evidence a large complexity in the osmotrophic uptake of HPG, which varies over time within and across eukaryotic groups and highlights the potential of BONCAT to quantify osmotrophy and protein synthesis in complex eukaryotic communities.

2.
Sci Total Environ ; 905: 166923, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37704133

ABSTRACT

Plastic production continues to increase every year, yet it is widely acknowledged that a significant portion of this material ends up in ecosystems as microplastics (MPs). Among all the environmental compartments affected by MPs, the atmosphere remains the least well-known. Here, we conducted a one-year simultaneous monitoring of atmospheric MPs deposition in ten urban areas, each with different population sizes, economic activities, and climates. The objective was to assess the role of the atmosphere in the fate of MPs by conducting a nationwide quantification of atmospheric MP deposition. To achieve this, we deployed collectors in ten different urban areas across continental Spain and the Canary Islands. We implemented a systematic sampling methodology with rigorous quality control/quality assurance, along with particle-oriented identification and quantification of anthropogenic particle deposition, which included MPs and industrially processed natural fibres. Among the sampled MPs, polyester fibres were the most abundant, followed by acrylic polymers, polypropylene, and alkyd resins. Their equivalent sizes ranged from 22 µm to 398 µm, with a median value of 71 µm. The particle size distribution of MPs showed fewer large particles than expected from a three-dimensional fractal fragmentation pattern, which was attributed to the higher mobility of small particles, especially fibres. The atmospheric deposition rate of MPs ranged from 5.6 to 78.6 MPs m-2 day-1, with the higher values observed in densely populated areas such as Barcelona and Madrid. Additionally, we detected natural polymers, mostly cellulosic fibres with evidence of industrial processing, with a deposition rate ranging from 6.4 to 58.6 particles m-2 day-1. There was a positive correlation was found between the population of the study area and the median of atmospheric MP deposition, supporting the hypothesis that urban areas act as sources of atmospheric MPs. Our study presents a systematic methodology for monitoring atmospheric MP deposition.

3.
Water Res ; 238: 120044, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37156103

ABSTRACT

The purpose of this study was to investigate the occurrence of microplastics (MPs) in drinking water in Spain by comparing tap water from different locations using common sampling and identification procedures. We sampled tap water from 24 points in 8 different locations from continental Spain and the Canary Islands by means of 25 µm opening size steel filters coupled to household connections. All particles were measured and spectroscopically characterized including not only MPs but also particles consisting of natural materials with evidence of industrial processing, such as dyed natural fibres, referred insofar as artificial particles (APs). The average concentration of MPs was 12.5 ± 4.9 MPs/m3 and that of anthropogenic particles 32.2 ± 12.5 APs/m3. The main synthetic polymers detected were polyamide, polyester, and polypropylene, with lower counts of other polymers including the biopolymer poly(lactic acid). Particle size and mass distributions were parameterized by means of power law distributions, which allowed performing estimations of the concentration of smaller particles provided the same scaling parameter of the power law applies. The calculated total mass concentration of the identified MPs was 45.5 ng/L. The observed size distribution of MPs allowed an estimation for the concentration of nanoplastics (< 1 µm) well below the ng/L range; higher concentrations are not consistent with scale invariant fractal fragmentation. Our findings showed that MPs in the drinking water sampled in this work do not represent a significant way of exposure to MPs and would probably pose a negligible risk for human health.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Humans , Microplastics , Plastics , Drinking Water/analysis , Spain , Cities , Water Pollutants, Chemical/analysis , Environmental Monitoring , Polymers
4.
Sci Total Environ ; 854: 158683, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36099941

ABSTRACT

Ocean acidification and plastic pollution are considered as potential planetary boundary threats for which crossing certain thresholds could be very harmful for the world's societies and ecosystems well-being. Surface oceans have acidified around 0.1 units since the Industrial Revolution, and the amount of plastic reaching the ocean in 2018 was quantified to 13 million metric tonnes. Currently, both ocean threats are worsening with time. Plastic leaching is known to alter the biogeochemistry of the ocean through the release of dissolved organic matter. However, its impact in the inorganic chemistry of the seawater is less studied. Here we show, from laboratory experiments, that abiotic plastic degradation induces a decrease in seawater pH, particularly if the plastic is already aged, as that found in the ocean. The pH decrease is enhanced by solar radiation, and it is probably induced from a combination of the release of organic acids and the production of CO2. It is also related to the amount of leached dissolved organic carbon, with higher acidification as leaching increases. In coastal areas, where plastic debris accumulates in large quantities, plastic leaching could lead to a seawater pH decrease up to 0.5 units. This is comparable to the projected decrease induced in surface oceans by the end of the twenty-first century for the most pessimistic anthropogenic emissions scenarios.

5.
Chemosphere ; 309(Pt 2): 136809, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36228721

ABSTRACT

This work aims at evaluating the fate of microplastics (MPs) along Fenton oxidation. For such goal, realistic MPs (150-250 µm) of five representative polymer types (PET, PE, PVC, PP and EPS) were obtained from commercial plastic products by cryogenic milling. Experiments (7.5 h) were performed under relatively severe operating conditions: T = 80 °C; pH0 = 3; [H2O2]0 = 1000 mgL-1 (15 doses, 1 every 0.5 h); [Fe3+]0 = 10 mgL-1 (5 doses, 1 every 1.5 h). Slight MPs weight losses (∼10%) were achieved after Fenton oxidation regardless the MP nature. Nevertheless, oxidation yield clearly increased with decreasing the particle size given their higher exposed surface area (up to 20% weight loss with 20-50 µm EPS MPs). Clearly, MPs suffered important changes in their surface due to the introduction of oxygenated groups, which made them more acidic and hydrophilic. Furthermore, MPs progressively reduced their size. In fact, they can be completely oxidized to CO2, as demonstrated in the oxidation of PS nanoplastics (140 nm), where 70% mineralization was achieved. The nature of the plastic particles had a relevant impact on its overall oxidation, being more prone to be oxidized those polymers which contain aromatic rings in their structures (EPS and PET) compared to those formed by alkane chains (PE, PP and PVC). In the latter, the presence of substituents also reduced their oxidation potential. Remarkably, possible leachates released along reaction were more quickly oxidized than the MPs/NPs, so it can be assumed that these dissolved compounds would be completely removed once the solid particles are eliminated. Notably, the leachates obtained upon MPs oxidation were more biodegradable than the released from the fresh solids. All this knowledge is crucial for the understanding of MPs oxidation by the Fenton process and opens the door for the design and optimization of this technology either for water treatment or for analytical purposes (MPs isolation).


Subject(s)
Microplastics , Plastics , Hydrogen Peroxide/chemistry , Carbon Dioxide , Polyvinyl Chloride , Alkanes
6.
Sci Total Environ ; 834: 155264, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35439504

ABSTRACT

Plastic in the ocean releases organic compounds that are able to enter the marine dissolved organic carbon pool and be utilized by heterotrophic bacteria. However, no information is known about which groups of bacteria are able to grow and degrade plastic leachates. Here we characterized a marine bacterial community from the NW Mediterranean Sea growing on plastic leachates and quantified its total activity. We used two petro-based plastics, low density polyethylene (LDPE) and polystyrene, and one biodegradable plastic, polylactic acid (PLA), to generate leachates under irradiated (UV-Vis) and non-irradiated conditions. Then we incubated them with a natural bacterial inoculum and determined the single-cell activity and associated taxonomy of the bacterial groups, using a combination of Catalyzed Reporter Deposition-Fluorescence In Situ Hybridization (CARDFISH) and BioOrthogonal Non-Canonical Amino acid Tagging (BONCAT). The community growing in the leachates was mainly composed of Alteromonas (Gammaproteobacteria), followed by Roseobacter (Alphaproteobacteria) and unclassified Gammaproteobacteria. Overall, marine bacteria in the irradiated treatments showed higher total activity compared to the non-irradiated ones, with the community growing on LDPE's leachates presenting the highest values. The biodegradable PLA leachates presented lower activity than those from petro-based plastics but similar bacterial composition, suggesting that it is possible that PLA could last in the ocean as much as petro-based plastics do. The results from this study show the impact of marine plastic debris in the marine microbial community and the marine carbon cycle.


Subject(s)
Biodegradable Plastics , Plastics , Bacteria/metabolism , In Situ Hybridization, Fluorescence , Plastics/metabolism , Polyesters/metabolism , Polyethylene/metabolism , Seawater/microbiology
7.
Rev Environ Contam Toxicol ; 257: 163-218, 2021.
Article in English | MEDLINE | ID: mdl-34487249

ABSTRACT

Plastic litter dispersed in the different environmental compartments represents one of the most concerning problems associated with human activities. Specifically, plastic particles in the micro and nano size scale are ubiquitous and represent a threat to human health and the environment. In the last few decades, a huge amount of research has been devoted to evaluate several aspects of micro/nano-plastic contamination: origin and emissions, presence in different compartments, environmental fate, effects on human health and the environment, transfer in the food web and the role of associated chemicals and microorganisms. Nevertheless, despite the bulk of information produced, several knowledge gaps still exist. The objective of this paper is to highlight the most important of these knowledge gaps and to provide suggestions for the main research needs required to describe and understand the most controversial points to better orient the research efforts for the near future. Some of the major issues that need further efforts to improve our knowledge on the exposure, effects and risk of micro/nano-plastics are: harmonization of sampling procedures; development of more accurate, less expensive and less time-consuming analytical methods; assessment of degradation patterns and environmental fate of fragments; evaluating the capabilities for bioaccumulation and transfer to the food web; and evaluating the fate and the impact of chemicals and microorganisms associated with micro/nano-plastics. The major gaps in all sectors of our knowledge, from exposure to potentially harmful effects, refer to small size microplastics and, particularly, to the occurrence, fate and effects of nanoplastics.


Subject(s)
Plastics , Water Pollutants, Chemical , Environmental Monitoring , Humans , Microplastics , Plastics/toxicity , Research , Water Pollutants, Chemical/analysis
8.
Sci Rep ; 11(1): 3200, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33547356

ABSTRACT

Seafloor structures related to the emission of different fluids, such as submarine mud volcanoes (MVs), have been recently reported to largely contribute with dissolved organic matter (DOM) into the oceans. Submarine MVs are common structures in the Gulf of Cádiz. However, little is known about the biogeochemical processes that occur in these peculiar environments, especially those involving DOM. Here, we report DOM characterization in the sediment pore water of three MVs of the Gulf of Cádiz. Estimated benthic fluxes of dissolved organic carbon (DOC) and chromophoric DOM (CDOM) were higher than in other marine sediments with an average of 0.11 ± 0.04 mmol m-2 d-1 for DOC and ranging between 0.11 and 2.86 m-1 L m-2 d-1, for CDOM. Protein-like components represented ~ 70% of the total fluorescent DOM (FDOM). We found that deep fluids migration from MVs (cold seeps) and anaerobic production via sulfate-reducing bacteria represent a source of DOC and FDOM to the overlying water column. Our results also indicate that fluorescent components can have many diverse sources not captured by common classifications. Overall, MVs act as a source of DOC, CDOM, and FDOM to the deep waters of the Gulf of Cádiz, providing energy to the microbial communities living there.

9.
Water Res ; 175: 115678, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32199186

ABSTRACT

Although there are numerous studies concerning the occurrence of microplastics (MP) in the environment and its impact on the ecosystem, dissolved organic matter (DOM) leached from MP (MP-DOM) has received little attention, and its characteristics have been rarely examined. It is presumed that the DOM leaching from plastics could be accelerated when plastics lost their protective additives during their transport and weathering processes in aquatic systems. In this study, two additive-free MPs (or micro-sized plastic polymers) were leached in artificial freshwater under UV irradiation and dark conditions. The leached DOM was characterized by typical analyses for naturally occurring DOM (N-DOM) such as dissolved organic carbon (DOC), size exclusion chromatography (SEC), and Fourier-transform infrared spectroscopy (FTIR). The potential to generate trihalomethanes (THMs), a well-known environmental impact of N-DOM, was also explored for the DOM with plastic origins for the first time. The leaching results demonstrated that UV irradiation promoted the leaching of DOM from the plastic polymers with an amount corresponding to ∼3% of the total mass of the polymers. The leached amounts were much greater than those previously reported using commercial plastics which presumably contained protective additives. The SEC results revealed that, different from typical aquatic N-DOM, MP-DOM is mostly composed of low molecular weight fractions <350 Da. For the two polymer types (polyethylene and polypropylene), the MP-DOM exhibited a high potential to form THMs upon chlorination, which was comparable to those of typical aquatic N-DOM. This study highlighted an overlooked contribution of UV irradiation to the DOM leaching from additive-free plastics and the potential risk of MP-DOM to produce toxic disinfection byproducts (DBPs) upon chlorination.


Subject(s)
Disinfection , Plastics , Ecosystem , Microplastics , Polymers , Trihalomethanes
10.
Nat Commun ; 9(1): 1430, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29651045

ABSTRACT

Approximately 5.25 trillion plastic pieces are floating at the sea surface. The impact of plastic pollution on the lowest trophic levels of the food web, however, remains unknown. Here we show that plastics release dissolved organic carbon (DOC) into the ambient seawater stimulating the activity of heterotrophic microbes. Our estimates indicate that globally up to 23,600 metric tons of DOC are leaching from marine plastics annually. About 60% of it is available to microbial utilization in less than 5 days. If exposed to solar radiation, however, this DOC becomes less labile. Thus, plastic pollution of marine surface waters likely alters the composition and activity of the base of the marine food webs. It is predicted that plastic waste entering the ocean will increase by a factor of ten within the next decade, resulting in an increase in plastic-derived DOC that might have unaccounted consequences for marine microbes and for the ocean system.


Subject(s)
Bacteria/drug effects , Carbon/chemistry , Environmental Pollution/analysis , Heterotrophic Processes/drug effects , Plastics/chemistry , Seawater/chemistry , Bacteria/growth & development , Bacteria/metabolism , Carbon/pharmacology , Food Chain , Light , Oceans and Seas , Plastics/radiation effects , Solar Energy , Solubility
11.
Environ Sci Technol ; 51(10): 5404-5413, 2017 May 16.
Article in English | MEDLINE | ID: mdl-28391701

ABSTRACT

The antioxidant capacity and formation of photochemically produced reactive intermediates (RI) was studied for water samples collected from the Florida Everglades with different spatial (marsh versus estuarine) and temporal (wet versus dry season) characteristics. Measured RI included triplet excited states of dissolved organic matter (3DOM*), singlet oxygen (1O2), and the hydroxyl radical (•OH). Single and multiple linear regression modeling were performed using a broad range of extrinsic (to predict RI formation rates, RRI) and intrinsic (to predict RI quantum yields, ΦRI) parameters. Multiple linear regression models consistently led to better predictions of RRI and ΦRI for our data set but poor prediction of ΦRI for a previously published data set,1 probably because the predictors are intercorrelated (Pearson's r > 0.5). Single linear regression models were built with data compiled from previously published studies (n ≈ 120) in which E2:E3, S, and ΦRI values were measured, which revealed a high degree of similarity between RI-optical property relationships across DOM samples of diverse sources. This study reveals that •OH formation is, in general, decoupled from 3DOM* and 1O2 formation, providing supporting evidence that 3DOM* is not a •OH precursor. Finally, ΦRI for 1O2 and 3DOM* correlated negatively with antioxidant activity (a surrogate for electron donating capacity) for the collected samples, which is consistent with intramolecular oxidation of DOM moieties by 3DOM*.


Subject(s)
Organic Chemicals , Wetlands , Florida , Hydroxyl Radical , Oxidation-Reduction , Photolysis , Singlet Oxygen
12.
Environ Sci Technol ; 50(24): 13361-13370, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27993080

ABSTRACT

Photolysis is a major removal pathway for the biogenic gas dimethylsulfide (DMS) in the surface ocean. Here we tested the hypothesis that apparent quantum yields (AQY) for DMS photolysis varied according to the quantity and quality of its photosensitizers, chiefly chromophoric dissolved organic matter (CDOM) and nitrate. AQY compiled from the literature and unpublished studies ranged across 3 orders of magnitude at the 330 nm reference wavelength. The smallest AQY(330) were observed in coastal waters receiving major riverine inputs of terrestrial CDOM (0.06-0.5 m3 (mol quanta)-1). In open-ocean waters, AQY(330) generally ranged between 1 and 10 m3 (mol quanta)-1. The largest AQY(330), up to 34 m3 (mol quanta)-1), were seen in the Southern Ocean potentially associated with upwelling. Despite the large AQY variability, daily photolysis rate constants at the sea surface spanned a smaller range (0.04-3.7 d-1), mainly because of the inverse relationship between CDOM absorption and AQY. Comparison of AQY(330) with CDOM spectral signatures suggests there is an interplay between CDOM origin (terrestrial versus marine) and photobleaching that controls variations in AQYs, with a secondary role for nitrate. Our results can be used for regional or large-scale assessment of DMS photolysis rates in future studies.


Subject(s)
Photobleaching , Photolysis , Nitrates , Oceans and Seas
13.
Proc Natl Acad Sci U S A ; 113(38): 10497-502, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27582464

ABSTRACT

The inventories of carbon residing in organic matter dissolved in the ocean [dissolved organic carbon (DOC)] and in the atmosphere as CO2 are of the same order of magnitude, such that small changes in the DOC pool could have important consequences in atmospheric carbon and thus climate. DOC in the global ocean is largely formed in the sunlit euphotic zone, but identifying predictable controls on that production is an important yet unrealized goal. Here, we use a testable and causative correlation between the net production of DOC and the consumption of new nutrients in the euphotic zone of the Atlantic Ocean. We demonstrate that new nutrients introduced to the euphotic zone by upwelling in divergence zones and by winter convective overturn of the water column, and the primary production associated with those nutrients, are the ultimate driver of DOC distributions across the Atlantic basins. As new nutrient input will change with a changing climate, the role of DOC in the ocean's biological pump should likewise be impacted.

15.
Nat Commun ; 6: 5986, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25631682

ABSTRACT

Marine dissolved organic matter (DOM) is one of the largest reservoirs of reduced carbon on Earth. In the dark ocean (>200 m), most of this carbon is refractory DOM. This refractory DOM, largely produced during microbial mineralization of organic matter, includes humic-like substances generated in situ and detectable by fluorescence spectroscopy. Here we show two ubiquitous humic-like fluorophores with turnover times of 435±41 and 610±55 years, which persist significantly longer than the ~350 years that the dark global ocean takes to renew. In parallel, decay of a tyrosine-like fluorophore with a turnover time of 379±103 years is also detected. We propose the use of DOM fluorescence to study the cycling of resistant DOM that is preserved at centennial timescales and could represent a mechanism of carbon sequestration (humic-like fraction) and the decaying DOM injected into the dark global ocean, where it decreases at centennial timescales (tyrosine-like fraction).


Subject(s)
Darkness , Internationality , Oceans and Seas , Organic Chemicals/analysis , Fluorescence , Oxygen/analysis , Ships , Solubility , Time Factors , Water
16.
Water Res ; 55: 40-51, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24602859

ABSTRACT

Surface freshwater samples from Everglades National Park, Florida, were used to investigate the size distributions of natural dissolved organic matter (DOM) and associated fluorescence characteristics along the molecular weight continuum. Samples were fractionated using size exclusion chromatography (SEC) and characterized by spectroscopic means, in particular Excitation-Emission Matrix fluorescence modeled with parallel factor analysis (EEM-PARAFAC). Most of the eight components obtained from PARAFAC modeling were broadly distributed across the DOM molecular weight range, and the optical properties of the eight size fractions for all samples studied were quite consistent among each other. Humic-like components presented a similar distribution in all the samples, with enrichment in the middle molecular weight range. Some variability in the relative distribution of the different humic-like components was observed among the different size fractions and among samples. The protein like fluorescence, although also generally present in all fractions, was more variable but generally enriched in the highest and lowest molecular weight fractions. These observations are in agreement with the hypothesis of a supramolecular structure for DOM, and suggest that DOM fluorescence characteristics may be controlled by molecular assemblies with similar optical properties, distributed along the molecular weight continuum. This study highlights the importance of studying the molecular structure of DOM on a molecular size distribution perspective, which may have important implications in understanding the environmental dynamics such materials.


Subject(s)
Organic Chemicals/analysis , Chromatography, Gel , Fresh Water/analysis , Molecular Weight , Organic Chemicals/chemistry , Spectrometry, Fluorescence
17.
Environ Sci Process Impacts ; 16(4): 866-78, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24549208

ABSTRACT

Natural dissolved organic matter (DOM) is the major absorber of sunlight in most natural waters and a critical component of carbon cycling in aquatic systems. The combined effect of light absorbance properties and related photo-production of reactive species are essential in determining the reactivity of DOM. Optical properties and in particular excitation-emission matrix fluorescence spectroscopy combined with parallel factor analysis (EEM-PARAFAC) have been used increasingly to track sources and fate of DOM. Here we describe studies conducted in water from two estuarine systems in the Florida Everglades, with a salinity gradient of 2 to 37 and dissolved organic carbon concentrations from 19.3 to 5.74 mg C L(-1), aimed at assessing how the quantity and quality of DOM is coupled to the formation rates and steady-state concentrations of reactive species including singlet oxygen, hydroxyl radical, and the triplet excited state of DOM. These species were related to optical properties and PARAFAC components of the DOM. The formation rate and steady-state concentration of the carbonate radical was calculated in all samples. The data suggests that formation rates, particularly for singlet oxygen and hydroxyl radicals, are strongly coupled to the abundance of terrestrial humic-like substances. A decrease in singlet oxygen, hydroxyl radical, and carbonate radical formation rates and steady-state concentration along the estuarine salinity gradient was observed as the relative concentration of terrestrial humic-like DOM decreased due to mixing with microbial humic-like and protein-like DOM components, while the formation rate of triplet excited-state DOM did not change. Fluorescent DOM was also found to be more tightly coupled to reactive species generation than chromophoric DOM.


Subject(s)
Fresh Water/chemistry , Humic Substances , Photochemical Processes , Seawater/chemistry , Water Pollutants/chemistry , Florida , Models, Chemical , Spectrometry, Fluorescence , Sunlight
18.
Appl Environ Microbiol ; 77(21): 7490-8, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21742918

ABSTRACT

An understanding of the distribution of colored dissolved organic matter (CDOM) in the oceans and its role in the global carbon cycle requires a better knowledge of the colored materials produced and consumed by marine phytoplankton and bacteria. In this work, we examined the net uptake and release of CDOM by a natural bacterial community growing on DOM derived from four phytoplankton species cultured under axenic conditions. Fluorescent humic-like substances exuded by phytoplankton (excitation/emission [Ex/Em] wavelength, 310 nm/392 nm; Coble's peak M) were utilized by bacteria in different proportions depending on the phytoplankton species of origin. Furthermore, bacteria produced humic-like substances that fluoresce at an Ex/Em wavelength of 340 nm/440 nm (Coble's peak C). Differences were also observed in the Ex/Em wavelengths of the protein-like materials (Coble's peak T) produced by phytoplankton and bacteria. The induced fluorescent emission of CDOM produced by prokaryotes was an order of magnitude higher than that of CDOM produced by eukaryotes. We have also examined the final compositions of the bacterial communities growing on the exudates, which differed markedly depending on the phytoplankton species of origin. Alteromonas and Roseobacter were dominant during all the incubations on Chaetoceros sp. and Prorocentrum minimum exudates, respectively. Alteromonas was the dominant group growing on Skeletonema costatum exudates during the exponential growth phase, but it was replaced by Roseobacter afterwards. On Micromonas pusilla exudates, Roseobacter was replaced by Bacteroidetes after the exponential growth phase. Our work shows that fluorescence excitation-emission matrices of CDOM can be a helpful tool for the identification of microbial sources of DOM in the marine environment, but further studies are necessary to explore the association of particular bacterial groups with specific fluorophores.


Subject(s)
Bacteria/growth & development , Bacteria/metabolism , Microbial Consortia , Organic Chemicals/metabolism , Phytoplankton/metabolism , Phytoplankton/microbiology , Seawater/microbiology , Bacteria/classification , Bacteria/isolation & purification , Biodiversity , Biomass
19.
J Med Chem ; 50(16): 3937-44, 2007 Aug 09.
Article in English | MEDLINE | ID: mdl-17602466

ABSTRACT

Cinnamtannin B-1, a natural A-type proanthocyanidin recently identified as a radical scavenger component of Laurus nobilis L., exerts antiaggregant and antiapoptotic effects in human platelets. Here, we have investigated the intracellular mechanisms involved in the antiaggregant effects of cinnamtannin B-1. Cinnamtannin B-1 showed a greater free radical scavenging activity than vitamin C, vitamin E, or Trolox, among other antioxidants and reduced thrombin-evoked tubulin reorganization and platelet aggregation. Thrombin-evoked activation of Btk and pp60(src) was also inhibited by cinnamtannin B-1. In conclusion, we show that cinnamtannin B-1 is a powerful oxygen radical scavenger that reduces thrombin-evoked microtubular remodeling and activation of the tyrosine kinases Btk and pp60(src), which leads to inhibition of platelet aggregation. These observations suggest that cinnamtannin B-1 may prevent thrombotic complications associated to platelet hyperaggregability and hyperactivity, although further studies are necessary to establish appropriate therapeutic strategies.


Subject(s)
Anthocyanins/pharmacology , Free Radical Scavengers/pharmacology , Laurus , Platelet Aggregation Inhibitors/pharmacology , Agammaglobulinaemia Tyrosine Kinase , Calcium/metabolism , Cell Survival/drug effects , Enzyme Activation , Humans , In Vitro Techniques , Microtubules/drug effects , Phosphorylation , Proanthocyanidins , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins pp60(c-src)/metabolism , Thrombin/metabolism , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...