Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Arch Pharm (Weinheim) ; 357(5): e2300615, 2024 May.
Article in English | MEDLINE | ID: mdl-38315093

ABSTRACT

Novel arylidene-5(4H)-imidazolone derivatives 4a-r were designed and evaluated as multidrug-directed ligands, that is, inflammatory, proinflammatory mediators, and reactive oxygen species (ROS) inhibitors. All of the tested compounds showed cyclooxygenase (COX)-1 inhibitory effect more than celecoxib and less than indomethacin and also demonstrated an improved inhibitory activity against 15-lipoxygenase (15-LOX). Compounds 4f, 4l, and 4p exhibited COX-2 selectivity comparable to that of celecoxib, while 4k was the most selective COX-2 inhibitor. Interestingly, the screened results showed that compound 4k exhibited a superior inhibition effect against 15-LOX and was found to be the most selective COX-2 inhibitor over celecoxib, whereas compound 4f showed promising COX-2 and 15-LOX inhibitory activities besides its inhibitory effect against ROS production and its lowering effect of both tumor necrosis factor-α and interleukin-6 levels by ∼80%. Moreover, compound 4f attenuated the lipopolysaccharide-mediated increase in NF-κB activation in RAW 264.7 macrophages. The preferred binding affinity of these molecules was confirmed by docking studies. We conclude that arylidene-5(4H)-imidazolone scaffolds provide promising hits for developing new synthons with anti-inflammatory and antioxidant activities.


Subject(s)
Arachidonate 15-Lipoxygenase , Cyclooxygenase 2 Inhibitors , Drug Design , Lipoxygenase Inhibitors , Molecular Docking Simulation , Reactive Oxygen Species , Mice , Animals , RAW 264.7 Cells , Structure-Activity Relationship , Arachidonate 15-Lipoxygenase/metabolism , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Molecular Structure , Reactive Oxygen Species/metabolism , Cyclooxygenase 2/metabolism , Dose-Response Relationship, Drug , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Macrophages/drug effects , Macrophages/metabolism , Humans
3.
Curr Opin Physiol ; 362023 Dec.
Article in English | MEDLINE | ID: mdl-37842179

ABSTRACT

Polycystic Ovary Syndrome (PCOS) is the most common endocrine disorder in reproductive-age women. PCOS is diagnosed by the presence of two of the following three characteristics: hyperandrogenemia and/or hyperandrogenism, oligo/amenorrhea, and polycystic ovarian morphology. PCOS is associated with reproductive and non-reproductive complications, including obesity, insulin resistance and diabetes, dyslipidemia, and increased blood pressure. There is an urgent need for biomarkers that address both the reproductive and non-reproductive aspects of this complex syndrome. This review focuses on biomarkers, or potential ones, associated with the reproductive and non-reproductive aspects of PCOS, including anthropometric and clinical biomarkers, insulin and the IGF-1 system, lipids, anti-Müllerian hormone and gonadotropins, steroids, inflammatory and renal injury biomarkers, oxidative stress, and non-coding RNAs. We expect that this review will bring some light on the recent updates in the field and encourage researchers to join the exciting and promising field of PCOS biomarkers.

4.
Eur J Med Chem ; 260: 115724, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37611534

ABSTRACT

Emerging evidence points to the intertwining framework of inflammation and oxidative stress in various ailments. We speculate on the potential impact of the magic shotgun approach in these ailments as an attempt to mitigate the drawbacks of current NSAIDs. Hence, we rationally designed and synthesized new tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine monomers/heterodimer as dual selective COX-2/15-LOX inhibitors with potent antioxidant activity. The synthesized compounds were challenged with diverse in vitro biological assays. Regarding the monomeric series, compound 5k exerted the highest COX-2 inhibitory activity (IC50 = 0.068 µM, SI = 160.441), while compound 5i showed the highest 15-LOX inhibitory activity (IC50 = 1.97 µM). Surpassing the most active monomeric members, the heterodimer 11 stemmed as the most potent and selective one in the whole study (COX-2 IC50 = 0.065 µM, SI = 173.846, 15-LOX IC50 = 1.86 µM). Heterodimer design was inspired by the cross-talk between the partner monomers of the COX-2 isoform. Moreover, some of our synthesized compounds could significantly reverse the LPS-enhanced production of ROS and proinflammatory cytokines (IL-6, TNF-α, and NO) in RAW 264.7 macrophages. Again, the heterodimer showed the strongest suppressor activity against ROS (IC50 = 18.79 µM) and IL-6 (IC50 = 4.15 µM) production outperforming the two references, celecoxib and diclofenac. Regarding NO suppressor activity, compound 5j (IC50 = 18.62 µM) surpassed the two references. Only compound 5a significantly suppressed TNF-α production (IC50 = 19.68 µM). Finally, molecular modeling simulated the possible binding scenarios of our synthesized thienopyrimidines within the active sites of COX-2 and 15-LOX. These findings suggest that those novel thienopyrimidines are promising leads showing pharmacodynamics synergy against the selected targets.


Subject(s)
Antioxidants , Interleukin-6 , Antioxidants/pharmacology , Cyclooxygenase 2 , Reactive Oxygen Species , Tumor Necrosis Factor-alpha , Anti-Inflammatory Agents/pharmacology , Pyrimidines/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology
6.
Eur J Med Chem ; 256: 115443, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37182334

ABSTRACT

A new series of thieno[2,3-d]pyrimidine derivatives 4, 5, 6a-o, and 11 was designed and synthesized starting from cyclohexanone under Gewald condition with the aim to develop multitarget-directed ligands (MTDLs) having anti-inflammatory properties against both 15-LOX and COX-2 enzymes. Moreover, the potential of the compounds against the proinflammatory mediators NO, ROS, TNF-α, and IL-6 were tested in LPS-activated RAW 264.7 macrophages. Compound 6o showed the greatest 15-LOX inhibitory effect (IC50 = 1.17 µM) which was superior to that of the reference nordihydroguaiaretic acid (NDGA, IC50 = 1.28 µM); meanwhile, compounds 6h, 6g, 11, and 4 exhibited potent activities (IC50 = 1.29-1.77 µM). The ester 4 (SI = 137.37) and the phenyl-substituted acetohydrazide 11 (SI = 132.26) showed the highest COX-2 selectivity, which was about 28 times more selective than the reference drug diclofenac (SI = 4.73), however, it was lower than that of celecoxib (SI = 219.25). Interestingly, compound 6o, which showed the highest 15-LOX inhibitory activity and 5 times higher COX-2 selectivity than diclofenac, showed a greater poteny in reducing NO (IC50 = 7.77 µM) than both celecoxib (IC50 = 22.89 µM) and diclofenac (IC50 = 25.34), but comparable activity in inhibiting TNF-α (IC50 = 11.27) to diclofenac (IC50 = 10.45 µM). Similarly, compounds 11 and 6h were more potent in reducing TNF-α and IL6 levels than diclofenac, meanwhile, compound 4 reduced ROS, NO, IL6, and TNF-α levels with comparable potency to the reference drugs celecoxib and diclofenac. Furthermore, docking studies for our compounds within 15-LOX and COX-2 active sites revealed good agreement with the biological evaluations. The proposed compounds could be promising multi-targeted anti-inflammatory candidates to treat resistant inflammatory conditions.


Subject(s)
Cyclooxygenase 2 Inhibitors , Diclofenac , Celecoxib , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/chemistry , Cytokines , Arachidonate 15-Lipoxygenase , Tumor Necrosis Factor-alpha , Interleukin-6 , Reactive Oxygen Species , Molecular Docking Simulation , Anti-Inflammatory Agents , Pyrimidines/pharmacology , Structure-Activity Relationship , Lipoxygenase Inhibitors/chemistry
7.
Arch Toxicol ; 97(7): 1907-1925, 2023 07.
Article in English | MEDLINE | ID: mdl-37179516

ABSTRACT

Acetaminophen (APAP)-induced Acute Liver Failure (ALF) is recognized as the most common cause of ALF in Western societies. APAP-induced ALF is characterized by coagulopathy, hepatic encephalopathy, multi-organ failure, and death. MicroRNAs are small, non-coding RNAs that regulate gene expression at the post-transcriptional level. MicroRNA-21 (miR-21) is dynamically expressed in the liver and is involved in the pathophysiology of both acute and chronic liver injury models. We hypothesize that miR-21genetic ablation attenuates hepatotoxicity following acetaminophen intoxication. Eight-week old miR-21knockout (miR21KO) or wild-type (WT) C57BL/6N male mice were injected with acetaminophen (APAP, 300 mg/kg BW) or saline. Mice were sacrificed 6 or 24 h post-injection. MiR21KO mice presented attenuation of liver enzymes ALT, AST, LDH compared with WT mice 24 h post-APAP treatment. Moreover, miR21KO mice had decreased hepatic DNA fragmentation and necrosis than WT mice after 24 h of APAP treatment. APAP-treated miR21KO mice showed increased levels of cell cycle regulators CYCLIN D1 and PCNA, increased autophagy markers expression (Map1LC3a, Sqstm1) and protein (LC3AB II/I, p62), and an attenuation of the APAP-induced hypofibrinolytic state via (PAI-1) compared with WT mice 24 post-APAP treatment. MiR-21 inhibition could be a novel therapeutic approach to mitigate APAP-induced hepatotoxicity and enhance survival during the regenerative phase, particularly to alter regeneration, autophagy, and fibrinolysis. Specifically, miR-21 inhibition could be particularly useful when APAP intoxication is detected at its late stages and the only available therapy is minimally effective.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Liver Failure, Acute , MicroRNAs , Animals , Male , Mice , Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/prevention & control , Liver , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism
8.
J Enzyme Inhib Med Chem ; 38(1): 2199166, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37038884

ABSTRACT

We designed and synthesised novel quinazolinone tethered phenyl urea derivatives (6a-p) that triple target the double mutant EGFRL858R/T790M, COX-2, and 15-LOX. Compounds (6e, 6d, 6j, 6m, and 6n) not only had low micromolar IC50 inhibitory activities against the three targets, but they also showed good selectivity for COX-2 over COX-1 and for EGFRL858R/T790M over wild-type EGFR. Except for 6e and 6n, all of the tested compounds inhibited the NO production significantly more potently than celecoxib, diclofenac, and indomethacin. Compounds 6i and 6k reduced ROS levels more effectively than celecoxib and diclofenac. In terms of inhibiting TNF-α production, 6o-treated cells showed TNF-α level, which is ∼10 times lower than celecoxib. Furthermore, 6e and 6j had the highest anticancer activity against the breast cancer cell line BT-459 with growth inhibition percentages of 67.14 and 70.07%, respectively. Docking studies confirm their favoured binding affinity. The proposed compounds could be promising multi-targeted leads.


Subject(s)
ErbB Receptors , Lung Neoplasms , Humans , ErbB Receptors/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Quinazolinones/pharmacology , Celecoxib , Diclofenac/therapeutic use , Tumor Necrosis Factor-alpha , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Mutation , Anti-Inflammatory Agents/pharmacology , Urea/pharmacology , Structure-Activity Relationship , Molecular Docking Simulation
9.
Front Endocrinol (Lausanne) ; 14: 951099, 2023.
Article in English | MEDLINE | ID: mdl-36875461

ABSTRACT

Polycystic Ovary Syndrome (PCOS) is the most common endocrine disorder in reproductive-age women. PCOS is characterized by androgen excess, oligo/anovulation, and polycystic appearance of the ovaries. Women with PCOS have an increased prevalence of multiple cardiovascular risk factors such as insulin resistance, hypertension, renal injury, and obesity. Unfortunately, there is a lack of effective, evidence-based pharmacotherapeutics to target these cardiometabolic complications. Sodium-glucose cotransporter-2 (SGLT2) inhibitors provide cardiovascular protection in patients with and without type 2 diabetes mellitus. Although the exact mechanisms of how SGLT2 inhibitors confer cardiovascular protection remains unclear, numerous mechanistic hypotheses for this protection include modulation of the renin-angiotensin system and/or the sympathetic nervous system and improvement in mitochondrial function. Data from recent clinical trials and basic research show a potential role for SGLT2 inhibitors in treating obesity-associated cardiometabolic complications in PCOS. This narrative review discusses the mechanisms of the beneficial effect of SGLT2 inhibitors in cardiometabolic diseases in PCOS.


Subject(s)
Obesity , Polycystic Ovary Syndrome , Sodium-Glucose Transporter 2 Inhibitors , Female , Humans , Diabetes Mellitus, Type 2 , Hypertension , Polycystic Ovary Syndrome/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
12.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R670-R681, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36121142

ABSTRACT

Placenta ischemia, the initiating event in preeclampsia (PE), is associated with fetal growth restriction. Inhibition of the agonistic autoantibody against the angiotensin type 1 receptor AT1-AA, using an epitope-binding inhibitory peptide ('n7AAc') attenuates increased blood pressure at gestational day (G)19 in the clinically relevant reduced uterine perfusion pressure (RUPP) model of PE. Thus we tested the hypothesis that maternal administration of 'n7AAc' does not transfer to the fetus, improves uterine blood flow and fetal growth, and attenuates elevated placental expression of miRNAs implicated in PE and FGR. Sham or RUPP surgery was performed at G14 with vehicle or 'n7AAc' (144 µg/day) administered via an osmotic pump from G14 to G20. Maternal plasma levels of the peptide on G20 were 16.28 ± 4.4 nM, and fetal plasma levels were significantly lower at 1.15 ± 1.7 nM (P = 0.0007). The uterine artery resistance index was significantly elevated in RUPP (P < 0.0001) but was not increased in 'n7AAc'-RUPP or 'n7AAc'-Sham versus Sham. A significant reduction in fetal weight at G20 in RUPP (P = 0.003) was not observed in 'n7AAc'-RUPP. Yet, percent survival was reduced in RUPP (P = 0.0007) and 'n7AAc'-RUPP (P < 0.0002). Correlation analysis indicated the reduction in percent survival during gestation was specific to the RUPP (r = 0.5342, P = 0.043) and independent of 'n7AAc'. Placental miR-155 (P = 0.0091) and miR-181a (P = 0.0384) expression was upregulated in RUPP at G20 but was not elevated in 'n7AAc'-RUPP. Collectively, our results suggest that maternal administration of 'n7AAc' does not alter fetal growth in the RUPP implicating its potential as a therapeutic for the treatment of PE.NEW & NOTEWORTHY The seven amino acid inhibitory peptide to the AT1-AA ('n7AAc') has limited transfer to the fetus at gestational day 20, improves uterine blood flow and fetal growth in the reduced uterine perfusion pressure model of preeclampsia (PE), and does not impair fetal survival during gestation in sham-operated or placental ischemic rats. Collectively, these findings suggest that maternal administration of 'n7AAc' as an effective strategy for the treatment of PE is associated with improved outcomes in the fetus.


Subject(s)
MicroRNAs , Pre-Eclampsia , Animals , Female , Humans , Pregnancy , Rats , Amino Acids/metabolism , Autoantibodies/metabolism , Blood Pressure/physiology , Disease Models, Animal , Epitopes/metabolism , Fetal Development , Ischemia , MicroRNAs/metabolism , Peptides/pharmacology , Placenta/metabolism , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1/metabolism , Uterine Artery
13.
Kidney360 ; 3(8): 1449-1457, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36176644

ABSTRACT

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age, affecting approximately 10%. PCOS is diagnosed by the presence of at least two of these three criteria: hyperandrogenemia, oligo- or anovulation, and polycystic ovaries. The most common type (80%) of PCOS includes hyperandrogenemia. PCOS is also characterized by obesity or overweight (in 80% of US women with PCOS), insulin resistance with elevated plasma insulin but not necessarily hyperglycemia, dyslipidemia, proteinuria, and elevated BP. Although elevated compared with age-matched controls, BP may not reach levels considered treatable according to the current clinical hypertension guidelines. However, it is well known that elevated BP, even modestly so, increases the risk of cardiovascular disease. We have developed a model of hyperandrogenemia in rodents that mimics the characteristics of PCOS in women, with increases in body weight, insulin resistance, dyslipidemia, andproteinuria and elevated BP. This review discusses potential mechanisms responsible for the elevated BP in the adult and aging PCOS rat model that may be extrapolated to women with PCOS.


Subject(s)
Anovulation , Hyperandrogenism , Insulin Resistance , Insulins , Polycystic Ovary Syndrome , Animals , Female , Humans , Hyperandrogenism/diagnosis , Polycystic Ovary Syndrome/diagnosis , Rats
14.
Biol Sex Differ ; 13(1): 45, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35986388

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS), characterized by androgen excess and ovulatory dysfunction, is associated with a high prevalence of obesity and insulin resistance (IR) in women. We demonstrated that sodium-glucose cotransporter-2 inhibitor (SGLT2i) administration decreases fat mass without affecting IR in the PCOS model. In male models of IR, administration of SGLT2i decreases oxidative stress and improves mitochondrial function in white adipose tissue (WAT). Therefore, we hypothesized that SGLT2i reduces adiposity via improvement in mitochondrial function and oxidative stress in WAT in PCOS model. METHODS: Four-week-old female rats were treated with dihydrotestosterone for 90 days (PCOS model), and SGLT2i (empagliflozin) was co-administered during the last 3 weeks. Body composition was measured before and after SGLT2i treatment by EchoMRI. Subcutaneous (SAT) and visceral (VAT) WAT were collected for histological and molecular studies at the end of the study. RESULTS: PCOS model had an increase in food intake, body weight, body mass index, and fat mass/lean mass ratio compared to the control group. SGLT2i lowered fat mass/lean ratio in PCOS. Glucosuria was observed in both groups, but had a larger magnitude in controls. The net glucose balance was similar in both SGLT2i-treated groups. The PCOS SAT had a higher frequency of small adipocytes and a lower frequency of large adipocytes. In SAT of controls, SGLT2i increased frequencies of small and medium adipocytes while decreasing the frequency of large adipocytes, and this effect was blunted in PCOS. In VAT, PCOS had a lower frequency of small adipocytes while SGLT2i increased the frequency of small adipocytes in PCOS. PCOS model had decreased mitochondrial content in SAT and VAT without impacting oxidative stress in WAT or the circulation. SGLT2i did not modify mitochondrial function or oxidative stress in WAT in both treated groups. CONCLUSIONS: Hyperandrogenemia in PCOS causes expansion of WAT, which is associated with decreases in mitochondrial content and function in SAT and VAT. SGLT2i increases the frequency of small adipocytes in VAT only without affecting mitochondrial dysfunction, oxidative stress, or IR in the PCOS model. SGLT2i decreases adiposity independently of adipose mitochondrial and oxidative stress mechanisms in the PCOS model.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Polycystic Ovary Syndrome , Sodium-Glucose Transporter 2 Inhibitors , Adipose Tissue, White , Animals , Female , Glucose , Humans , Insulin Resistance/physiology , Male , Mitochondria , Obesity , Oxidative Stress , Polycystic Ovary Syndrome/drug therapy , Rats , Sodium-Glucose Transporter 2 , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
15.
Bioorg Chem ; 124: 105808, 2022 07.
Article in English | MEDLINE | ID: mdl-35447409

ABSTRACT

In an attempt to obtain new candidates with potential anti-inflammatory activity, two series of 1,3,4-oxadiazole based derivatives (8a-g) and 1,2,4-triazole based derivatives (10a,b and 11a-g) were synthesized and evaluated for their COX-1/COX-2 inhibitory activity. In vitro assays showed potent COX-2 inhibitory activity and selectivity of the novel designed compounds (IC50 = 0.04 - 0.16 µM, SI = 60.71 - 337.5) compared to celecoxib (IC50 = 0.045 µM, SI = 326.67). The anti-inflammatory and antioxidant activity of the synthesized compounds was investigated via testing their ability to inhibit pro-inflammatory [tumour necrosis factor (TNF-α) and interleukin-6 (IL-6)] and oxidative stress [nitric oxide (NO) and reactive oxygen species (ROS)] markers production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. Most of the novel compounds exhibited potent anti-inflammatory and antioxidant activity. In particular, the novel compounds showed excellent IL-6 inhibitory activity (IC50 = 0.96 - 11.14 µM) when compared to celecoxib (IC50 = 13.04 µM) and diclofenac sodium (IC50 = 22.97 µM). Moreover, the most potent and selective COX-2 inhibitor 11c (IC50 = 0.04 µM, SI = 337.5) displayed significantly higher activity against NO and ROS production compared to celecoxib (IC50 = 2.60 and 3.01 µM vs. 16.47 and 14.30 µM, respectively). Molecular modelling studies of the novel designed molecules into COX-2 active sites analysed their binding affinity. In-silico simulation studies indicated their acceptable physicochemical properties and pharmacokinetic profiles. This study suggests that the novel synthesized COX-2 inhibitors exert potent anti-inflammatory and antioxidant activity, highlighting their potential as promising therapeutic agents for the treatment of inflammation and oxidative stress-related diseases.


Subject(s)
Cyclooxygenase 2 Inhibitors , Lipopolysaccharides , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antioxidants/metabolism , Antioxidants/pharmacology , Celecoxib/pharmacology , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/chemistry , Drug Design , Interleukin-6/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Molecular Docking Simulation , Nitric Oxide/metabolism , Oxadiazoles , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Triazoles
16.
J Endocr Soc ; 7(2): bvac191, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36601021

ABSTRACT

Introduction: In addition to their antihyperglycemic action, sodium-glucose cotransporter-2 (SGLT2) inhibitors are used in patients with type 2 diabetes due to their cardioprotective effects. Meta-analyses of large clinical trials have reported mixed results when examining sex differences in their cardioprotective effects. For example, some studies reported that, compared to women, men had a greater reduction in cardiovascular risk with SGLT2 inhibition. Taking advantage of several recently completed large-scale randomized controlled clinical trials, we tested the hypothesis that women have an attenuated response in primary cardiorenal outcomes to SGLT2 inhibition compared to men. Methods: We performed a systematic search using PubMed and the Cochrane Library to find completed large-scale, prospective, randomized controlled Phase III clinical trials with primary outcomes testing cardiovascular or renal benefit. Studies had to include at least 1000 participants and report data about sex differences in their primary cardiovascular or renal outcomes. Results: The present meta-analysis confirmed that SGLT2 inhibition decreased adverse cardiorenal outcomes in a pooled sex analysis using 13 large-scale clinical trials. SGLT2 inhibition exhibited similar reduction in hazard ratios for both men (0.79, 95% CI, 0.73-0.85) and women (0.78, 95% CI, 0.72-0.84) for adverse cardiorenal outcomes. Conclusion: In contrast to previous findings, our updated meta-analysis suggests that women and men experience similar cardiorenal benefit in response to SGLT2 inhibition. These findings strongly suggest that SGLT2 inhibition therapy should be considered in patients with high risk for cardiovascular disease irrespective of the patient sex.

17.
FASEB J ; 35(11): e21945, 2021 11.
Article in English | MEDLINE | ID: mdl-34606638

ABSTRACT

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder and the most common cause of androgen excess in reproductive-age women. The heterogeneity of the clinical presentation in PCOS patients suggests the involvement of multiples abnormal physiological pathways. In addition, women with PCOS have a high prevalence of cardiometabolic risk factors. Unfortunately, limited effective evidence-based therapeutic agents are available to treat the cardiometabolic complications in PCOS patients. Insights from recent studies highlight the multiple opportunities to deliver timely effective medical care for women with PCOS. This perspective manuscript aims to highlight the unmet need for effective and safe management of the cardiometabolic complications in PCOS patients.


Subject(s)
Diabetes Mellitus, Type 2/etiology , Dyslipidemias/etiology , Hypertension/etiology , Insulin Resistance , Obesity/etiology , Polycystic Ovary Syndrome/complications , Androgen Antagonists/therapeutic use , Androgens/metabolism , Contraceptives, Oral/therapeutic use , Diabetes Mellitus, Type 2/diet therapy , Diabetes Mellitus, Type 2/drug therapy , Dyslipidemias/diet therapy , Dyslipidemias/drug therapy , Female , Healthy Lifestyle , Humans , Hypertension/diet therapy , Hypertension/drug therapy , Hypoglycemic Agents/therapeutic use , Obesity/diet therapy , Obesity/drug therapy , Obesity/surgery , Polycystic Ovary Syndrome/metabolism , Treatment Outcome
18.
Int J Mol Sci ; 22(18)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34575910

ABSTRACT

The susceptibility and the severity of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are associated with hyperandrogenism, obesity, and preexisting pulmonary, metabolic, renal, and cardiac conditions. Polycystic ovary syndrome (PCOS), the most common endocrine disorder in premenopausal women, is associated with obesity, hyperandrogenism, and cardiometabolic dysregulations. We analyzed cardiac, renal, circulatory, and urinary SARS-CoV-2 viral entry proteins (ACE2, TMPRSS2, TMPRSS4, furin, cathepsin L, and ADAM17) and androgen receptor (AR) expression, in a peripubertal androgen exposure model of PCOS. Peripubertal female mice were treated with dihydrotestosterone (DHT) and low (LFD) or high (HFD) fat diet for 90 days. HFD exacerbated DHT-induced increase in body weight, fat mass, and cardiac and renal hypertrophy. In the heart, DHT upregulated AR protein in both LFD and HFD, ACE2 in HFD, and ADAM17 in LFD. In the kidney, AR protein expression was upregulated by both DHT and HFD. Moreover, ACE2 and ADAM17 were upregulated by DHT in both diets. Renal TMPRSS2, furin, and cathepsin L were upregulated by DHT and differentially modulated by the diet. DHT upregulated urinary ACE2 in both diets, while neither treatment modified serum ACE2. Renal AR mRNA expression positively correlated with Ace2, Tmprss2, furin, cathepsin L, and ADAM17. Our findings suggest that women with PCOS could be a population with a high risk of COVID-19-associated cardiac and renal complications. Furthermore, our study suggests that weight loss by lifestyle modifications (i.e., diet) could potentially mitigate COVID-19-associated deleterious cardiorenal outcomes in women with PCOS.


Subject(s)
COVID-19 , Obesity , Polycystic Ovary Syndrome/virology , Receptors, Coronavirus/immunology , SARS-CoV-2/physiology , Virus Internalization , Animals , COVID-19/immunology , COVID-19/virology , Female , Heart , Kidney , Mice , Mice, Inbred C57BL , Obesity/immunology , Obesity/virology
19.
J Enzyme Inhib Med Chem ; 36(1): 1810-1828, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34338135

ABSTRACT

Novel quinazolinones conjugated with indole acetamide (4a-c), ibuprofen (7a-e), or thioacetohydrazide (13a,b, and 14a-d) were designed to increase COX-2 selectivity. The three synthesised series exhibited superior COX-2 selectivity compared with the previously reported quinazolinones and their NSAID analogue and had equipotent COX-2 selectivity as celecoxib. Compared with celecoxib, 4 b, 7c, and 13 b showed similar anti-inflammatory activity in vivo, while 13 b and 14a showed superior inhibition of the inflammatory mediator nitric oxide, and 7 showed greater antioxidant potential in macrophages cells. Moreover, all selected compounds showed improved analgesic activity and 13 b completely abolished the pain response. Additionally, compound 4a showed anticancer activity in tested cell lines HCT116, HT29, and HCA7. Docking results were consistent with COX-1/2 enzyme assay results. In silico studies suggest their high oral bioavailability. The overall findings for compounds (4a,b, 7c, 13 b, and 14c) support their potential role as anti-inflammatory agents.


Subject(s)
Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Drug Design , Hydrazines/chemistry , Ibuprofen/chemistry , Indoles/chemistry , Quinazolinones/chemistry , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Biological Availability , Cell Line, Tumor , Cyclooxygenase 2 Inhibitors/chemical synthesis , Drug Screening Assays, Antitumor , Humans , Hydrazines/chemical synthesis , Hydrazines/pharmacology , Ibuprofen/chemical synthesis , Ibuprofen/pharmacology , Indoles/chemical synthesis , Indoles/pharmacology , Mice , Molecular Docking Simulation , Spectrum Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...