Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 200: 116090, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316101

ABSTRACT

Microplastics have accumulated in the environment since plastic production began, with present-day observations that range from marine trenches to mountains. However, research on microplastics has only recently begun so it is unclear how they have changed over time in many oceanic regions. Our study addressed this gap by quantifying the temporal and spatial dynamics of microplastics in two deep-water regions of the Gulf of Mexico (GOM). We isolated agglutinated foraminifera from sediment cores and assessed microplastics that were incorporated into their tests. Our results indicated that microplastics were incorporated by agglutinated foraminifera after plastic production began. Microplastics were higher at deep-water sites and closer to the Mississippi River. This study confirms the presence of microplastic incorporation into agglutinated foraminifera tests and investigates microplastics in deep-water sediments in the GOM. Additional work is needed to fully identify the distribution of microplastics across the GOM and other oceanic basins.


Subject(s)
Foraminifera , Water Pollutants, Chemical , Microplastics , Plastics , Environmental Monitoring/methods , Gulf of Mexico , Water Pollutants, Chemical/analysis , Geologic Sediments , Water
2.
Sci Adv ; 9(16): eadg3200, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37075109

ABSTRACT

Echinoderm mass mortality events shape marine ecosystems by altering the dynamics among major benthic groups. The sea urchin Diadema antillarum, virtually extirpated in the Caribbean in the early 1980s by an unknown cause, recently experienced another mass mortality beginning in January 2022. We investigated the cause of this mass mortality event through combined molecular biological and veterinary pathologic approaches comparing grossly normal and abnormal animals collected from 23 sites, representing locations that were either affected or unaffected at the time of sampling. Here, we report that a scuticociliate most similar to Philaster apodigitiformis was consistently associated with abnormal urchins at affected sites but was absent from unaffected sites. Experimentally challenging naïve urchins with a Philaster culture isolated from an abnormal, field-collected specimen resulted in gross signs consistent with those of the mortality event. The same ciliate was recovered from treated specimens postmortem, thus fulfilling Koch's postulates for this microorganism. We term this condition D. antillarum scuticociliatosis.


Subject(s)
Ecosystem , Sea Urchins , Animals , Caribbean Region
3.
Sci Total Environ ; 820: 152892, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35051468

ABSTRACT

Oil and gas extraction activities occur across the globe, yet species-specific toxicological information on the biological and ecological impacts of exposure to petrochemicals is lacking for the vast majority of marine species. To help prioritize species for recovery, mitigation, and conservation in light of significant toxicological data gaps, a trait-based petrochemical vulnerability index was developed and applied to the more than 1700 marine fishes present across the entire Gulf of Mexico, including all known bony fishes, sharks, rays and chimaeras. Using life history and other traits related to likelihood of exposure, physiological sensitivity to exposure, and population resiliency, final calculated petrochemical vulnerability scores can be used to provide information on the relative sensitivity, or resilience, of marine fish populations across the Gulf of Mexico to oil and gas activities. Based on current knowledge of traits, marine fishes with the highest vulnerability scores primarily occur in areas of high petrochemical activity, are found at or near the surface, and have low reproductive turnover rates and/or highly specialized diet and habitat requirements. Relative population vulnerability scores for marine fishes can be improved with additional toxicokinetic studies, including those that account for the synergistic or additive effect of multiple stressors, as well as increased research on ecological and life history traits, especially for deep living species.


Subject(s)
Ecosystem , Fishes , Petroleum Pollution , Water Pollutants, Chemical , Animals , Fishes/physiology , Gulf of Mexico , Mexico , Oil and Gas Industry , Reproduction , Species Specificity
4.
Sci Total Environ ; 763: 142986, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33168243

ABSTRACT

A fundamental understanding of the impact of petrochemicals and other stressors on marine biodiversity is critical for effective management, restoration, recovery, and mitigation initiatives. As species-specific information on levels of petrochemical exposure and toxicological response are lacking for the majority of marine species, a trait-based assessment to rank species vulnerabilities to petrochemical activities in the Gulf of Mexico can provide a more comprehensive and effective means to prioritize species, habitats, and ecosystems for improved management, restoration and recovery. To initiate and standardize this process, we developed a trait-based framework, applicable to a wide range of vertebrate and invertebrate species, that can be used to rank relative population vulnerabilities of species to petrochemical activities in the Gulf of Mexico. Through expert consultation, 18 traits related to likelihood of exposure, individual sensitivity, and population resilience were identified and defined. The resulting multi-taxonomic petrochemical vulnerability framework can be adapted and applied to a wide variety of species groups and geographic regions. Additional recommendations and guidance on the application of the framework to rank species vulnerabilities under specific petrochemical exposure scenarios, management needs or data limitations are also discussed.


Subject(s)
Biodiversity , Ecosystem , Animals , Gulf of Mexico , Invertebrates , Mexico , Vertebrates
5.
PLoS One ; 15(4): e0231678, 2020.
Article in English | MEDLINE | ID: mdl-32294128

ABSTRACT

The southern Gulf of Mexico (sGoM) is home to an extensive oil recovery and development infrastructure. In addition, the basin harbors sites of submarine hydrocarbon seepage and receives terrestrial inputs from bordering rivers. We used stable carbon, nitrogen, and radiocarbon analyses of bulk sediment organic matter to define the current baseline isoscapes of surface sediments in the sGoM and determined which factors might influence them. These baseline surface isoscapes will be useful for accessing future environmental impacts. We also examined the region for influence of hydrocarbon deposition in the sedimentary record that might be associated with hydrocarbon recovery, spillage and seepage, as was found in the northern Gulf of Mexico (nGoM) following the Deepwater Horizon (DWH) oil spill in 2010. In 1979, the sGoM experienced a major oil spill, Ixtoc 1. Surface sediment δ13C values ranged from -22.4‰ to -19.9‰, while Δ14C values ranged from -337.1‰ to -69.2‰. Sediment δ15N values ranged from 2.8‰ to 7.2‰, while the %C on a carbonate-free basis ranged in value of 0.65% to 3.89% and %N ranged in value of 0.09% to 0.49%. Spatial trends for δ13C and Δ14C were driven by water depth and distance from the coastline, while spatial trends for δ15N were driven by location (latitude and longitude). Location and distance from the coastline were significantly correlated with %C and %N. At depth in two of twenty (10%) core profiles, we found negative δ13C and Δ14C excursions from baseline values in bulk sedimentary organic material, consistent with either oil-residue deposition or terrestrial inputs, but likely the latter. We then used 210Pb dating on those two profiles to determine the time in which the excursion-containing horizons were deposited. Despite the large spill in 1979, no evidence of hydrocarbon residue remained in the sediments from this specific time period.


Subject(s)
Carbon Radioisotopes/analysis , Environmental Monitoring/statistics & numerical data , Geologic Sediments/analysis , Radiometric Dating/statistics & numerical data , Carbon Isotopes/analysis , Gulf of Mexico , Lead Radioisotopes/analysis , Nitrogen/analysis
6.
Mar Pollut Bull ; 150: 110656, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31678679

ABSTRACT

During an oil spill, a marine oil snow sedimentation and flocculent accumulation (MOSSFA) event can transport oil residue to the seafloor. Microcosm experiments were used to test the effects of oil residues on meiofaunal abundance and the nematode:copepod ratio under different oil concentrations and in the presence and absence of marine snow. Total meiofaunal abundance was 1.7 times higher in the presence of snow regardless of oil concentration. The nematode:copepod ratio was 13.9 times lower in the snow treatment regardless of the oil concentration. Copepod abundance was 24.3 times higher in marine snow treatments and 4.3 times higher at the highest oil concentration. Nematode abundance was 1.7 times lower at the highest oil concentration. The result of the experiment was an enrichment effect. The lack of a toxic response in the experiments may be attributable to relatively low oil concentrations, weathering processes, and the absence of chemically dispersed oil.


Subject(s)
Copepoda , Environmental Monitoring , Nematoda , Petroleum Pollution , Water Pollutants, Chemical/toxicity , Animals , Geologic Sediments
7.
Mar Pollut Bull ; 141: 164-175, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30955722

ABSTRACT

Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA) can pose serious threats to the marine benthic ecosystem as it results in a deposition of oil contaminated marine snow on the sediment surface. In a microcosm experiment we investigated the effects of oil in combination with artificial marine snow or kaolin clay on two benthic invertebrate species and benthic meiofauna. The amphipod showed a dose-dependent decrease in survival for both oil-contaminated clay and oil-contaminated marine snow. The gastropod was only affected by the highest concentration of oil-contaminated marine snow and had internal concentrations of PAHs with a similar distribution as oil-contaminated marine snow. Benthic copepods showed higher survival in presence of marine snow. This study revealed that marine snow on the sediment after oil spills affects organisms in a trait-dependent way and that it can be a vector for introducing oil into the food web.


Subject(s)
Geologic Sediments/chemistry , Invertebrates/drug effects , Petroleum Pollution/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity , Animals , Copepoda/drug effects , Ecosystem , Ecotoxicology , Flocculation , Models, Theoretical , Polycyclic Aromatic Hydrocarbons/analysis , Species Specificity , Water Pollutants, Chemical/analysis
8.
Environ Sci Technol ; 52(19): 10985-10996, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30148351

ABSTRACT

This study characterizes a decadal assessment of polycyclic aromatic hydrocarbons (PAHs) in the muscle tissues of mesopelagic fish species as indicators of the environmental health of the Gulf of Mexico (GoM) deep-pelagic ecosystem. Mesopelagic fishes were collected prior to the Deepwater Horizon (DWH) oil spill (2007), immediately post-spill (2010), 1 year after the spill (2011), and 5-6 years post-spill (2015-2016) to assess if the mesopelagic ecosystem was exposed to, and retained, PAH compounds from the DWH spill. Results indicated that a 7- to 10-fold increase in PAHs in fish muscle tissues occurred in 2010-2011 (4972 ± 1477 ng/g) compared to 2007 (630 ± 236 ng/g). In 2015-2016, PAH concentrations decreased close to the levels measured in 2007 samples (827 ± 138 ng/g); however, the composition of PAHs still resembles a petrogenic source similar to samples collected in 2010-2011. PAH composition in muscle samples indicated that natural sources (e.g., Mississippi River and natural seeps) or spatial variability within the GoM do not explain the temporal variability of PAHs observed from 2007 to 2016. Furthermore, analysis of different fish tissues indicated the dietary intake and maternal transfer of PAHs as the primary mechanisms for bioaccumulation in 2015-2016, explaining the elevated levels and composition of PAHs in ovarian eggs.


Subject(s)
Petroleum Pollution , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Fishes , Gulf of Mexico , Mississippi
9.
Environ Pollut ; 237: 424-429, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29502005

ABSTRACT

Following the Deepwater Horizon (DWH) event in 2010, hydrocarbons were deposited on the continental slope in the northeastern Gulf of Mexico through marine oil snow sedimentation and flocculent accumulation (MOSSFA). The objective of this study was to test the hypothesis that benthic foraminiferal δ13C would record this depositional event. From December 2010 to August 2014, a time-series of sediment cores was collected at two impacted sites and one control site in the northeastern Gulf of Mexico. Short-lived radioisotopes (210Pb and 234Th) were employed to establish the pre-DWH, DWH, and post-DWH intervals. Benthic foraminifera (Cibicidoides spp. and Uvigerina spp.) were isolated from these intervals for δ13C measurement. A modest (0.2-0.4‰), but persistent δ13C depletion in the DWH intervals of impacted sites was observed over a two-year period. This difference was significantly beyond the pre-DWH (background) variability and demonstrated that benthic foraminiferal calcite recorded the depositional event. The longevity of the depletion in the δ13C record suggested that benthic foraminifera may have recorded the change in organic matter caused by MOSSFA from 2010 to 2012. These findings have implications for assessing the subsurface spatial distribution of the DWH MOSSFA event.


Subject(s)
Calcium Carbonate/analysis , Carbon/analysis , Environmental Monitoring/methods , Foraminifera/chemistry , Petroleum Pollution/analysis , Water Pollutants, Chemical/analysis , Flocculation , Geologic Sediments , Gulf of Mexico , Hydrocarbons/analysis , Lead Radioisotopes , Snow , Thorium
10.
PLoS One ; 13(1): e0190840, 2018.
Article in English | MEDLINE | ID: mdl-29370187

ABSTRACT

We use a spatially explicit biogeochemical end-to-end ecosystem model, Atlantis, to simulate impacts from the Deepwater Horizon oil spill and subsequent recovery of fish guilds. Dose-response relationships with expected oil concentrations were utilized to estimate the impact on fish growth and mortality rates. We also examine the effects of fisheries closures and impacts on recruitment. We validate predictions of the model by comparing population trends and age structure before and after the oil spill with fisheries independent data. The model suggests that recruitment effects and fishery closures had little influence on biomass dynamics. However, at the assumed level of oil concentrations and toxicity, impacts on fish mortality and growth rates were large and commensurate with observations. Sensitivity analysis suggests the biomass of large reef fish decreased by 25% to 50% in areas most affected by the spill, and biomass of large demersal fish decreased even more, by 40% to 70%. Impacts on reef and demersal forage caused starvation mortality in predators and increased reliance on pelagic forage. Impacts on the food web translated effects of the spill far away from the oiled area. Effects on age structure suggest possible delayed impacts on fishery yields. Recovery of high-turnover populations generally is predicted to occur within 10 years, but some slower-growing populations may take 30+ years to fully recover.


Subject(s)
Ecosystem , Fishes , Models, Biological , Petroleum Pollution/adverse effects , Animals , Biomass , Environment , Fisheries , Food Chain , Gulf of Mexico , Models, Statistical , Petroleum/analysis , Petroleum/toxicity , Petroleum Pollution/analysis , Population Dynamics/trends , Species Specificity , Stochastic Processes , Time Factors , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
11.
Environ Pollut ; 228: 179-189, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28535489

ABSTRACT

The blowout of the Deepwater Horizon (DWH) drilling rig in 2010 released an unprecedented amount of oil at depth (1,500 m) into the Gulf of Mexico (GoM). Sedimentary geochemical data from an extensive area (∼194,000 km2) was used to characterize the amount, chemical signature, distribution, and extent of the DWH oil deposited on the seafloor in 2010-2011 from coastal to deep-sea areas in the GoM. The analysis of numerous hydrocarbon compounds (N = 158) and sediment cores (N = 2,613) suggests that, 1.9 ± 0.9 × 104 metric tons of hydrocarbons (>C9 saturated and aromatic fractions) were deposited in 56% of the studied area, containing 21± 10% (up to 47%) of the total amount of oil discharged and not recovered from the DWH spill. Examination of the spatial trends and chemical diagnostic ratios indicate large deposition of weathered DWH oil in coastal and deep-sea areas and negligible deposition on the continental shelf (behaving as a transition zone in the northern GoM). The large-scale analysis of deposited hydrocarbons following the DWH spill helps understanding the possible long-term fate of the released oil in 2010, including sedimentary transformation processes, redistribution of deposited hydrocarbons, and persistence in the environment as recycled petrocarbon.


Subject(s)
Environmental Monitoring , Petroleum Pollution/analysis , Petroleum/analysis , Water Pollutants, Chemical/analysis , Gulf of Mexico , Hydrocarbons/analysis , Weather
12.
J Vis Exp ; (114)2016 08 17.
Article in English | MEDLINE | ID: mdl-27585268

ABSTRACT

Aquatic sediment core subsampling is commonly performed at cm or half-cm resolution. Depending on the sedimentation rate and depositional environment, this resolution provides records at the annual to decadal scale, at best. An extrusion method, using a calibrated, threaded-rod is presented here, which allows for millimeter-scale subsampling of aquatic sediment cores of varying diameters. Millimeter scale subsampling allows for sub-annual to monthly analysis of the sedimentary record, an order of magnitude higher than typical sampling schemes. The extruder consists of a 2 m aluminum frame and base, two core tube clamps, a threaded-rod, and a 1 m piston. The sediment core is placed above the piston and clamped to the frame. An acrylic sampling collar is affixed to the upper 5 cm of the core tube and provides a platform from which to extract sub-samples. The piston is rotated around the threaded-rod at calibrated intervals and gently pushes the sediment out the top of the core tube. The sediment is then isolated into the sampling collar and placed into an appropriate sampling vessel (e.g., jar or bag). This method also preserves the unconsolidated samples (i.e., high pore water content) at the surface, providing a consistent sampling volume. This mm scale extrusion method was applied to cores collected in the northern Gulf of Mexico following the Deepwater Horizon submarine oil release. Evidence suggests that it is necessary to sample at the mm scale to fully characterize events that occur on the monthly time-scale for continental slope sediments.


Subject(s)
Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Water Pollutants, Chemical/isolation & purification , Geologic Sediments
14.
Appl Environ Microbiol ; 82(2): 518-27, 2016 01 15.
Article in English | MEDLINE | ID: mdl-26546426

ABSTRACT

The Deepwater Horizon blowout in April 2010 represented the largest accidental marine oil spill and the largest release of chemical dispersants into the environment to date. While dispersant application may provide numerous benefits to oil spill response efforts, the impacts of dispersants and potential synergistic effects with crude oil on individual hydrocarbon-degrading bacteria are poorly understood. In this study, two environmentally relevant species of hydrocarbon-degrading bacteria were utilized to quantify the response to Macondo crude oil and Corexit 9500A-dispersed oil in terms of bacterial growth and oil degradation potential. In addition, specific hydrocarbon compounds were quantified in the dissolved phase of the medium and linked to ecotoxicity using a U.S. Environmental Protection Agency (EPA)-approved rotifer assay. Bacterial treatment significantly and drastically reduced the toxicity associated with dispersed oil (increasing the 50% lethal concentration [LC50] by 215%). The growth and crude oil degradation potential of Acinetobacter were inhibited by Corexit by 34% and 40%, respectively; conversely, Corexit significantly enhanced the growth of Alcanivorax by 10% relative to that in undispersed oil. Furthermore, both bacterial strains were shown to grow with Corexit as the sole carbon and energy source. Hydrocarbon-degrading bacterial species demonstrate a unique response to dispersed oil compared to their response to crude oil, with potentially opposing effects on toxicity. While some species have the potential to enhance the toxicity of crude oil by producing biosurfactants, the same bacteria may reduce the toxicity associated with dispersed oil through degradation or sequestration.


Subject(s)
Acinetobacter/metabolism , Hydrocarbons/metabolism , Petroleum/metabolism , Acinetobacter/growth & development , Alcanivoraceae/growth & development , Alcanivoraceae/metabolism , Biodegradation, Environmental , Hydrocarbons/toxicity , Petroleum/toxicity , Petroleum Pollution/analysis , Species Specificity
16.
PLoS One ; 10(5): e0128371, 2015.
Article in English | MEDLINE | ID: mdl-26020923

ABSTRACT

The Deepwater Horizon (DWH) spill released 4.9 million barrels of oil into the Gulf of Mexico (GoM) over 87 days. Sediment and water sampling efforts were concentrated SW of the DWH and in coastal areas. Here we present geochemistry data from sediment cores collected in the aftermath of the DWH event from 1000-1500 m water depth in the DeSoto Canyon, NE of the DWH wellhead. Cores were analyzed at high-resolution (at 2 mm and 5 mm intervals) in order to evaluate the concentration, composition and input of hydrocarbons to the seafloor. Specifically, we analyzed total organic carbon (TOC), aliphatic, polycyclic aromatic hydrocarbon (PAHs), and biomarker (hopanes, steranes, diasteranes) compounds to elucidate possible sources and transport pathways for deposition of hydrocarbons. Results showed higher hydrocarbon concentrations during 2010-2011 compared to years prior to 2010. Hydrocarbon inputs in 2010-2011 were composed of a mixture of sources including terrestrial, planktonic, and weathered oil. Our results suggest that after the DWH event, both soluble and highly insoluble hydrocarbons were deposited at enhanced rates in the deep-sea. We proposed two distinct transport pathways of hydrocarbon deposition: 1) sinking of oil-particle aggregates (hydrocarbon-contaminated marine snow and/or suspended particulate material), and 2) advective transport and direct contact of the deep plume with the continental slope surface sediments between 1000-1200 m. Our findings underline the complexity of the depositional event observed in the aftermath of the DWH event in terms of multiple sources, variable concentrations, and spatial (depth-related) variability in the DeSoto Canyon, NE of the DWH wellhead.


Subject(s)
Carbon/analysis , Petroleum Pollution/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Triterpenes/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Geologic Sediments , Gulf of Mexico , Seawater/chemistry
17.
PLoS One ; 10(3): e0120565, 2015.
Article in English | MEDLINE | ID: mdl-25785988

ABSTRACT

Sediment cores were collected from three sites (1000-1200 m water depth) in the northeastern Gulf of Mexico from December 2010 to June 2011 to assess changes in benthic foraminiferal density related to the Deepwater Horizon (DWH) event (April-July 2010, 1500 m water depth). Short-lived radioisotope geochronologies (²¹°Pb, ²³4Th), organic geochemical assessments, and redox metal concentrations were determined to relate changes in sediment accumulation rate, contamination, and redox conditions with benthic foraminiferal density. Cores collected in December 2010 indicated a decline in density (80-93%). This decline was characterized by a decrease in benthic foraminiferal density and benthic foraminiferal accumulation rate (BFAR) in the surface 10 mm relative to the down-core mean in all benthic foraminifera, including the dominant genera (Bulimina spp., Uvigerina spp., and Cibicidoides spp.). Cores collected in February 2011 documented a site-specific response. There was evidence of a recovery in the benthic foraminiferal density and BFAR at the site closest to the wellhead (45 NM, NE). However, the site farther afield (60 NM, NE) recorded a continued decline in benthic foraminiferal density and BFAR down to near-zero values. This decline in benthic foraminiferal density occurred simultaneously with abrupt increases in sedimentary accumulation rates, polycyclic aromatic hydrocarbon (PAH) concentrations, and changes in redox conditions. Persistent reducing conditions (as many as 10 months after the event) in the surface of these core records were a possible cause of the decline. Another possible cause was the increase (2-3 times background) in PAH's, which are known to cause benthic foraminifera mortality and inhibit reproduction. Records of benthic foraminiferal density coupled with short-lived radionuclide geochronology and organic geochemistry were effective in quantifying the benthic response and will continue to be a valuable tool in determining the long-term effects of the DWH event on a larger spatial scale.


Subject(s)
Foraminifera/drug effects , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity , Biodiversity , Foraminifera/physiology , Geologic Sediments/chemistry , Gulf of Mexico , Lead Radioisotopes , Oxidation-Reduction , Population Dynamics/statistics & numerical data , Seawater/chemistry , Thorium
18.
Rev. biol. trop ; 54(4): 1205-1214, dic. 2006. mapas, tab, graf, ilus
Article in Spanish | LILACS | ID: lil-492161

ABSTRACT

Herbivore leaf consumption of various mangrove species in relation to environmental factors and leaf hardness were studied in the Dagua river estuary, Colombia. Leaf consumption and damage were assessed by measuring the percentage of area attacked by herbivores, distinguishing between consumption and damage. The species that suffered the highest consumption, such as Avicennia germinans (Avicenniaceae) and Laguncularia racemosa (Combretaceae), had softer leaves and less herbivore species when compared with Rhizophora spp. (Rhizophoraceae) and Pelliciera rhizophorae (Theaceae). The abundance and diversity of leaf grazing and its variability among mangrove species in the Dagua River estuary, show the importance of the trophic dynamics of live vegetable matter, in spite of their relatively low contribution to removing organic matter.


Se estudió el consumo foliar por herbívoros en hojas de varias especies de mangle con relación a los factores ambientales y la dureza de las hojas en el estuario del río Dagua. La intensidad del consumo o de los daños producidos en las hojas se cuantificó determinando el porcentaje de área foliar afectado por herbívoros separando las distintas señales de consumo o daño de las hojas. Las especies más consumidas, como A germinans y L. racemosa, presentan el menor número de tipos de huellas de daños y menor dureza que las especies menos consumidas como Rhizophora sp. y P. rhizophorae. La abundancia y diversidad de huellas de ataque por herbívoros y su variabilidad a lo largo del estuario del río Dagua, muestra la importancia de los procesos de consumo de tejido vegetal vivo en el bosque de manglar dentro de la red trófica del sistema estuarino.


Subject(s)
Animals , Magnoliopsida , Feeding Behavior/physiology , Ecosystem , Plant Leaves , Insecta/physiology , Avicennia , Colombia , Combretaceae , Rhizophoraceae , Theaceae
19.
Rev Biol Trop ; 54(4): 1205-14, 2006 Dec.
Article in Spanish | MEDLINE | ID: mdl-18457159

ABSTRACT

Herbivore leaf consumption of various mangrove species in relation to environmental factors and leaf hardness were studied in the Dagua river estuary, Colombia. Leaf consumption and damage were assessed by measuring the percentage of area attacked by herbivores, distinguishing between consumption and damage. The species that suffered the highest consumption, such as Avicennia germinans (Avicenniaceae) and Laguncularia racemosa (Combretaceae), had softer leaves and less herbivore species when compared with Rhizophora spp. (Rhizophoraceae) and Pelliciera rhizophorae (Theaceae). The abundance and diversity of leaf grazing and its variability among mangrove species in the Dagua River estuary, show the importance of the trophic dynamics of live vegetable matter, in spite of their relatively low contribution to removing organic matter.


Subject(s)
Ecosystem , Feeding Behavior/physiology , Insecta/physiology , Magnoliopsida , Plant Leaves , Animals , Avicennia , Colombia , Combretaceae , Rhizophoraceae , Theaceae
SELECTION OF CITATIONS
SEARCH DETAIL
...