Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Chem ; 63(21): 12511-12525, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32658473

ABSTRACT

Multidrug resistant Gram-negative bacterial infections are an increasing public health threat due to rapidly rising resistance toward ß-lactam antibiotics. The hydrolytic enzymes called ß-lactamases are responsible for a large proportion of the resistance phenotype. ß-Lactamase inhibitors (BLIs) can be administered in combination with ß-lactam antibiotics to negate the action of the ß-lactamases, thereby restoring activity of the ß-lactam. Newly developed BLIs offer some advantage over older BLIs in terms of enzymatic spectrum but are limited to the intravenous route of administration. Reported here is a novel, orally bioavailable diazabicyclooctane (DBO) ß-lactamase inhibitor. This new DBO, ETX1317, contains an endocyclic carbon-carbon double bond and a fluoroacetate activating group and exhibits broad spectrum activity against class A, C, and D serine ß-lactamases. The ester prodrug of ETX1317, ETX0282, is orally bioavailable and, in combination with cefpodoxime proxetil, is currently in development as an oral therapy for multidrug resistant and carbapenem-resistant Enterobacterales infections.


Subject(s)
Anti-Bacterial Agents/chemistry , Azabicyclo Compounds/chemistry , beta-Lactamase Inhibitors/chemistry , beta-Lactamases/chemistry , Administration, Oral , Animals , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/metabolism , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Drug Design , Drug Evaluation, Preclinical , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Half-Life , Humans , Mice , Microbial Sensitivity Tests , Penicillin-Binding Proteins/chemistry , Penicillin-Binding Proteins/metabolism , Prodrugs/chemistry , Prodrugs/metabolism , Protein Binding , Rats , Skin Diseases/drug therapy , Skin Diseases/pathology , Skin Diseases/veterinary , Structure-Activity Relationship , beta-Lactamase Inhibitors/metabolism , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/therapeutic use , beta-Lactamases/metabolism
2.
Bioorg Med Chem Lett ; 27(8): 1670-1680, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28302397

ABSTRACT

The emergence and spread of multidrug-resistant (MDR) Gram negative bacteria presents a serious threat for public health. Novel antimicrobials that could overcome the resistance problems are urgently needed. UDP-3-O-(R-3-hydroxymyristol)-N-acetylglucosamine deacetylase (LpxC) is a cytosolic zinc-based deacetylase that catalyzes the first committed step in the biosynthesis of lipid A, which is essential for the survival of Gram-negative bacteria. Our efforts toward the discovery of novel LpxC inhibitors are presented herein.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/enzymology , Amidohydrolases/metabolism , Drug Discovery , Gram-Negative Bacterial Infections/drug therapy , Humans , Molecular Docking Simulation
3.
ACS Med Chem Lett ; 7(4): 374-8, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27096044

ABSTRACT

The ATPase subunit of DNA gyrase B is an attractive antibacterial target due to high conservation across bacteria and the essential role it plays in DNA replication. A novel class of pyrazolopyridone inhibitors was discovered by optimizing a fragment screening hit scaffold using structure guided design. These inhibitors show potent Gram-positive antibacterial activity and low resistance incidence against clinically important pathogens.

4.
ACS Med Chem Lett ; 6(10): 1080-5, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26487916

ABSTRACT

Antibacterials with a novel mechanism of action offer a great opportunity to combat widespread antimicrobial resistance. Bacterial DNA Gyrase is a clinically validated target. Through physiochemical property optimization of a pyrazolopyridone hit, a novel class of GyrB inhibitors were discovered. Guided by structure-based drug design, indazole derivatives with excellent enzymatic and antibacterial activity as well as great animal efficacy were discovered.

5.
J Med Chem ; 58(21): 8503-12, 2015 Nov 12.
Article in English | MEDLINE | ID: mdl-26460684

ABSTRACT

The emergence and spread of multidrug resistant bacteria are widely believed to endanger human health. New drug targets and lead compounds exempt from cross-resistance with existing drugs are urgently needed. We report on the discovery of azaindole ureas as a novel class of bacterial gyrase B inhibitors and detail the story of their evolution from a de novo design hit based on structure-based drug design. These inhibitors show potent minimum inhibitory concentrations against fluoroquinolone resistant MRSA and other Gram-positive bacteria.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , DNA Gyrase/metabolism , Indoles/pharmacology , Methicillin-Resistant Staphylococcus aureus/enzymology , Topoisomerase II Inhibitors/pharmacology , Urea/pharmacology , Bacterial Proteins/metabolism , Crystallography, X-Ray , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/enzymology , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Humans , Indoles/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Models, Molecular , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Topoisomerase II Inhibitors/chemistry , Urea/analogs & derivatives
6.
J Am Chem Soc ; 125(50): 15521-8, 2003 Dec 17.
Article in English | MEDLINE | ID: mdl-14664599

ABSTRACT

Lewis acid-mediated nucleophilic substitution reactions of substituted tetrahydropyran acetates reveal that the conformational preferences of six-membered-ring cations depend significantly upon the electronic nature of the substituent. Nucleophilic substitutions of C-3 and C-4 alkyl-substituted tetrahydropyran acetates proceeded via pseudoequatorially substituted oxocarbenium ions, as would be expected by consideration of steric effects. Substitutions of C-3 and C-4 alkoxy-substituted tetrahydropyran acetates, however, proceeded via pseudoaxially oriented oxocarbenium ions. The unusual selectivities controlled by the alkoxy groups were demonstrated for a range of other heteroatom substituents, including nitrogen, fluorine, chlorine, and bromine. It is believed that the pseudoaxial conformation is preferred in the ground state of the cation because of an electrostatic attraction between the cationic carbon center of the oxocarbenium ion and the heteroatom substituent. This analysis is supported by the observation that selectivity diminishes down the halogen series, which is inconsistent with electron donation as might be expected during anchimeric assistance. The C-2 heteroatom-substituted systems gave moderately high 1,2-cis selectivity, while small alkyl substituents showed no selectivity. Only in the case of the tert-butyl group at C-2 was high 1,2-trans selectivity observed. These studies reinforce the idea that ground-state conformational effects need to be considered along with steric approach considerations.


Subject(s)
Pyrans/chemistry , Cations , Molecular Conformation , Static Electricity , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL