Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Physiol Biochem ; 168: 282-293, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34673319

ABSTRACT

We analyzed the physiological impact of function loss on cheesmaniae alleles at the HKT1;1 and HKT1;2 loci in the roots and aerial parts of tomato plants in order to determine the relative contributions of each locus in the different tissues to plant Na+/K+ homeostasis and subsequently to tomato salt tolerance. We generated different reciprocal rootstock/scion combinations with non-silenced, single RNAi-silenced lines for ScHKT1;1 and ScHKT1;2, as well as a silenced line at both loci from a near isogenic line (NIL14), homozygous for the Solanum cheesmaniae haplotype containing both HKT1 loci and subjected to salinity under natural greenhouse conditions. Our results show that salt treatment reduced vegetative growth and altered the Na+/K+ ratio in leaves and flowers; negatively affecting fruit production, particularly in graft combinations containing single silenced ScHKT1;2- and double silenced ScHKT1;1/ScHKT1;2 lines when used as scion. We concluded that the removal of Na+ from the xylem by ScHKT1;2 in the aerial part of the plant can have an even greater impact than that on Na+ homeostasis at the root level under saline conditions. Also, ScHKT1;1 function loss in rootstock greatly reduced the Na+/K+ ratio in leaf and flower tissues, minimized yield loss under salinity. Our results suggest that, in addition to xylem Na+ unloading, ScHKT1;2 could also be involved in Na+ uploading into the phloem, thus promoting Na+ recirculation from aerial parts to the roots. This recirculation of Na+ to the roots through the phloem could be further favoured by ScHKT1;1 silencing at these roots.


Subject(s)
Solanum lycopersicum , Alleles , Flowers , Solanum lycopersicum/genetics , Plant Leaves , Plant Roots/genetics , Potassium , Salt Tolerance/genetics
2.
Plant Physiol Biochem ; 154: 341-352, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32604062

ABSTRACT

Genes encoding HKT1-like Na+ transporters play a key role in the salinity tolerance mechanism in Arabidopsis and other plant species by retrieving Na+ from the xylem of different organs and tissues. In this study, we investigated the role of two HKT1;2 allelic variants in tomato salt tolerance in relation to vegetative growth and fruit yield in plants subjected to salt treatment in a commercial greenhouse under real production conditions. We used two near-isogenic lines (NILs), homozygous for either the Solanum lycopersicum (NIL17) or S. cheesmaniae (NIL14) allele, at HKT1;2 loci and their respective RNAi-Sl/ScHKT1;2 lines. The results obtained show that both ScHKT1;2- and SlHKT1;2-silenced lines display hypersensitivity to salinity associated with an altered leaf Na+/K+ ratio, thus confirming that HKT1;2 plays an important role in Na+ homeostasis and salinity tolerance in tomato. Both silenced lines also showed Na+ over-accumulation and a slight, but significant, reduction in K+ content in the flower tissues of salt-treated plants and consequently a higher Na+/K+ ratio as compared to the respective unsilenced lines. This altered Na+/K+ ratio in flower tissues is associated with a sharp reduction in fruit yield, measured as total fresh weight and number of fruits, in both silenced lines under salinity conditions. Our findings demonstrate that Na+ transporter HKT1;2 protects the flower against Na+ toxicity and mitigates the reduction in tomato fruit yield under salinity conditions.


Subject(s)
Cation Transport Proteins/physiology , Plant Proteins/physiology , Salt Stress , Solanum lycopersicum/physiology , Flowers/chemistry , Fruit/growth & development , Potassium/metabolism , Sodium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL