Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Drugs ; 20(2)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35200630

ABSTRACT

Fucoidan is a polysaccharide obtained from marine brown algae, with anti-inflammatory, anti-viral, and immune-enhancing properties, thus, fucoidan may be used as an alternative treatment (complementary to prescribed medical therapy) for COVID-19 recovery. This work aimed to determine the ex-vivo effects of treatment with fucoidan (20 µg/mL) on mitochondrial membrane potential (ΔΨm, using a cationic cyanine dye, 3,3'-dihexyloxacarbocyanine iodide (DiOC6(3)) on human peripheral blood mononuclear cells (HPBMC) isolated from healthy control (HC) subjects, COVID-19 patients (C-19), and subjects that recently recovered from COVID-19 (R1, 40 ± 13 days after infection). In addition, ex-vivo treatment with fucoidan (20 and 50 µg/mL) was evaluated on ΔΨm loss induced by carbonyl cyanide 3-chlorophenylhydrazone (CCCP, 150 µM) in HPBMC isolated from healthy subjects (H) and recovered subjects at 11 months post-COVID-19 (R2, 335 ± 20 days after infection). Data indicate that SARS-CoV-2 infection induces HPBMC loss of ΔΨm, even 11 months after infection, however, fucoidan promotes recovery of ΔΨm in PBMCs from COVID-19 recovered subjects. Therefore, fucoidan may be a potential treatment to diminish long-term sequelae from COVID-19, using mitochondria as a therapeutic target for the recovery of cellular homeostasis.


Subject(s)
COVID-19 , Leukocytes, Mononuclear/drug effects , Membrane Potential, Mitochondrial/drug effects , Polysaccharides/pharmacology , SARS-CoV-2 , Adult , Aged , Female , Humans , Leukocytes, Mononuclear/physiology , Male , Middle Aged , Mitochondria/drug effects , Phaeophyceae/chemistry , Polysaccharides/chemistry , Young Adult
2.
Molecules ; 26(22)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34833894

ABSTRACT

Compound 5-{[(2E)-3-bromo-3-carboxyprop-2-enoyl]amino}-2-hydroxybenzoic acid (C1), a new 5-aminosalicylic acid (5-ASA) derivative, has proven to be an antioxidant in vitro and an anti-inflammatory agent in mice. The in vivo inhibition of myeloperoxidase was comparable to that of indomethacin. The aim of this study was to take another step in the preclinical evaluation of C1 by examining acute toxicity with the up-and-down OECD method and pharmacokinetic profiles by administration of the compound to Wistar rats through intravenous (i.v.), oral (p.o.), and intraperitoneal (i.p.) routes. According to the Globally Harmonized System, C1 belongs to categories 4 and 5 for the i.p. and p.o. routes, respectively. An RP-HPLC method for C1 quantification in plasma was successfully validated. Regarding the pharmacokinetic profile, the elimination half-life was approximately 0.9 h with a clearance of 24 mL/min after i.v. administration of C1 (50 mg/kg). After p.o. administration (50 mg/kg), the maximum plasma concentration was reached at 33 min, the oral bioavailability was about 77%, and the compound was amply distributed to all tissues evaluated. Therefore, C1 administered p.o. in rats is suitable for reaching the colon where it can exert its effect, suggesting an important advantage over 5-ASA and indomethacin in treating ulcerative colitis and Crohn's disease.


Subject(s)
Aminosalicylic Acids/pharmacokinetics , Aminosalicylic Acids/toxicity , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Aminosalicylic Acids/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Biological Availability , Colitis, Ulcerative/drug therapy , Crohn Disease/drug therapy , Drug Evaluation, Preclinical , Female , Hydroxybenzoates/chemistry , Hydroxybenzoates/pharmacokinetics , Hydroxybenzoates/toxicity , Lethal Dose 50 , Male , Rats , Rats, Wistar , Tissue Distribution
3.
J Pharm Pharmacol ; 72(7): 938-955, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32307724

ABSTRACT

OBJECTIVES: N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA), a derivative of valproic acid (VPA), has been proposed as a potential anticancer agent due to its improved antiproliferative effects in some cancer cell lines. Although there is evidence that VPA is metabolized by cytochrome P450 2C11 rat isoform, HO-AAVPA CYP-mediated metabolism has not yet been fully explored. Therefore, in this work, the biotransformation of HO-AAVPA by CYP2C11 was investigated. METHODS: Kinetic parameters and spectral interaction between HO-AAVPA and CYP were evaluated using rat liver microsomes. The participation of CYP2C11 in metabolism of HO-AAVPA was confirmed by cimetidine (CIM) inhibition assay. Docking and molecular dynamics simulations coupled to MMGBSA methods were used in theoretical study. KEY FINDINGS: HO-AAVPA is metabolized by CYP enzymes (KM  = 38.94 µm), yielding a hydroxylated metabolite according to its HPLC retention time (5.4 min) and MS analysis (252.2 m/z). In addition, CIM inhibition in rat liver microsomes (Ki  = 59.23 µm) confirmed that CYP2C11 is mainly involved in HO-AAVPA metabolism. Furthermore, HO-AAVPA interacts with CYP2C11 as a type I ligand. HO-AAVPA is stabilized at the CYP2C11 ligand recognition site through a map of interactions similar to other typical CYP2C11 substrates. CONCLUSION: Therefore, rat liver CYP2C11 isoform is able to metabolize HO-AAVPA.


Subject(s)
Amides/pharmacokinetics , Aryl Hydrocarbon Hydroxylases/metabolism , Biotransformation , Cytochrome P450 Family 2/metabolism , Microsomes, Liver , Pentanes/pharmacokinetics , Steroid 16-alpha-Hydroxylase/metabolism , Animals , Antineoplastic Agents/pharmacokinetics , Cell Proliferation/drug effects , Drug Stability , Hydroxylation , Isoenzymes/metabolism , Mixed Function Oxygenases/metabolism , Molecular Docking Simulation , Rats , Valproic Acid/pharmacology
4.
Anticancer Agents Med Chem ; 20(15): 1857-1872, 2020.
Article in English | MEDLINE | ID: mdl-32324521

ABSTRACT

BACKGROUND: Our research group has developed some Valproic Acid (VPA) derivatives employed as anti-proliferative compounds targeting the HDAC8 enzyme. However, some of these compounds are poorly soluble in water. OBJECTIVE: Employed the four generations of Polyamidoamine (G4 PAMAM) dendrimers as drug carriers of these compounds to increase their water solubility for further in vitro evaluation. METHODS: VPA derivatives were subjected to Docking and Molecular Dynamics (MD) simulations to evaluate their affinity on G4 PAMAM. Then, HPLC-UV/VIS, 1H NMR, MALDI-TOF and atomic force microscopy were employed to establish the formation of the drug-G4 PAMAM complexes. RESULTS: The docking results showed that the amide groups of VPA derivatives make polar interactions with G4 PAMAM, whereas MD simulations corroborated the stability of the complexes. HPLC UV/VIS experiments showed an increase in the drug water solubility which was found to be directly proportional to the amount of G4 PAMAM. 1H NMR showed a disappearance of the proton amine group signals, correlating with docking results. MALDI-TOF and atomic force microscopy suggested the drug-G4 PAMAM dendrimer complexes formation. DISCUSSION: In vitro studies showed that G4 PAMAM has toxicity in the micromolar concentration in MDAMB- 231, MCF7, and 3T3-L1 cell lines. VPA CF-G4 PAMAM dendrimer complex showed anti-proliferative properties in the micromolar concentration in MCF-7 and 3T3-L1, and in the milimolar concentration in MDAMB- 231, whereas VPA MF-G4 PAMAM dendrimer complex didn't show effects on the three cell lines employed. CONCLUSION: These results demonstrate that G4 PAMAM dendrimers are capableof transporting poorly watersoluble aryl-VPA derivate compounds to increase its cytotoxic activity against neoplastic cell lines.


Subject(s)
Antineoplastic Agents/pharmacology , Dendrimers/pharmacology , Nylons/pharmacology , Valproic Acid/pharmacology , 3T3-L1 Cells , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Dendrimers/chemical synthesis , Dendrimers/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Mice , Models, Molecular , Molecular Structure , Nylons/chemical synthesis , Nylons/chemistry , Structure-Activity Relationship , Valproic Acid/chemical synthesis , Valproic Acid/chemistry
5.
J Pharm Biomed Anal ; 162: 130-139, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30236821

ABSTRACT

N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA) is a novel valproic acid derivative that has shown anti-proliferative activity against epitheloid cervix carcinoma (HeLa), rhabdomyosarcoma (A204), and several breast cancer cell lines. The aim of this research was to evaluate the pharmacokinetic profile and tissue distribution of HO-AAVPA in Wistar rats, as well as its human serum albumin binding potential by experimental and in silico methods. A single dose of HO-AAVPA was given to male rats by intravenous, intragastric or intraperitoneal routes at doses of 25, 100, and 100 mg/kg, respectively. Then, blood samples were drawn at predetermined intervals of time, and the HO-AAVPA concentration in the plasma was quantified with a validated HPLC method. The elimination half-life (t1/2) was approximately 222 min, and the systemic clearance (CL) and apparent volume of distribution (Vd) were 2.20 mL/min/kg and 0.70 L/kg, respectively. The absolute oral bioavailability of HO-AAVPA was 33.8%, and the binding rate of HO-AAVPA with rat plasma proteins was between 66.2% and 83.0%. Additionally, in silico, UV and Raman spectroscopy data showed weak interactions between the test compound and human serum albumin. Thus, the results that were obtained demonstrated that despite its low oral bioavailability, the potential anticancer agent HO-AAVPA exhibits acceptable pharmacokinetic properties that would allow it to reach its site of action and exert its pharmacological effect in Wistar Rats, and it has a convenient profile for future assays to evaluate its human applications.


Subject(s)
Amides/pharmacokinetics , Antineoplastic Agents/pharmacokinetics , Pentanes/pharmacokinetics , Serum Albumin, Human/metabolism , Valproic Acid/pharmacokinetics , Administration, Oral , Amides/administration & dosage , Amides/blood , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/blood , Binding Sites , Biological Availability , Injections, Intraperitoneal , Injections, Intravenous , Male , Molecular Docking Simulation , Molecular Dynamics Simulation , Pentanes/administration & dosage , Pentanes/blood , Protein Binding , Rats, Wistar , Tissue Distribution , Valproic Acid/administration & dosage , Valproic Acid/blood
6.
J Mol Graph Model ; 76: 330-341, 2017 09.
Article in English | MEDLINE | ID: mdl-28759825

ABSTRACT

Dendrimers are synthetic macromolecules with a highly-branched structure and high concentration of surface groups. Among dendrimers, Poly(amidoamine) (PAMAM) has received substantial attention as a novel drug carrier and delivery system. Depending on the generation and type of terminal groups, dendrimer toxicity could change and include cytotoxicity. Although PAMAM is water soluble, molecular modeling of the dendrimer-drug complex is considered challenging for exploring the conformational mobility of dendrimers and atomic specific interactions during the dendrimer-drug association. However, conventional protocols for predicting binding affinities have been designed for small protein molecules or protein-protein complexes that can be applied to study the dendrimer-drug association. In this work, we performed docking calculations for a set of 94 previously reported compounds on PAMAM of fourth generation (G4-PAMAM) to select six compounds, cromoglicic acid (CRO) - a mast cell stabilizer, Fusidic acid (FUS) - a bacteriostatic antibiotic, and Methotrexate (MTX) - a chemotherapy agent and immune system suppressant, which have the highest affinities for G4-PAMAM, and Lidocaine (LDC) - used to numb tissue in a specific area and for ventricular tachycardia treatment, Metoprolol (MET) - a ß1 receptor blocker, and Pindolol (PIN) - a ß blocker, which have the lowest affinities for the G4-PAMAM dendrimer, to perform MD simulations combined with the molecular mechanics generalized/Poisson-Boltzmann surface area MMGBSA/MMPBSA approach to investigate the interactions of generating 4 charge-neutral, charge-basic and charge-acid G4-PAMAM dendrimers. In addition, to validate these theoretical G4-PAMAM-drug complexes, the complexes were experimentally conjugated to determine their stability in aqueous solubility studies immediately and over one year. Our results show that among the different commercial drugs, both charged and neutral PAMAM have the most favorable binding free energies for CRO, MTX, and FUS, which appears to be due to a complex counterbalance of electrostatics and van der Waals interactions. These theoretical and aqueous solubility studies supported the high affinity of methotrexate for the G4-PAMAM-drug due to its carboxyl and aryl moieties that favor its accommodation by noncovalent interactions.


Subject(s)
Benzoxazoles/chemistry , Dendrimers/chemistry , Hydrogen-Ion Concentration , Maleimides/chemistry , Models, Molecular , Molecular Conformation , Nylons/chemistry , Pharmaceutical Preparations/chemistry , Chromatography, High Pressure Liquid , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure
7.
PLoS One ; 11(7): e0159889, 2016.
Article in English | MEDLINE | ID: mdl-27454774

ABSTRACT

5-[(4-carboxybutanoyl)amino]-2-hydroxybenzoic acid (C2) is a novel synthetic derivative of 5-aminosalicylic acid (5-ASA), which is currently being evaluated ex vivo as an anti-inflammatory agent and has shown satisfactory results. This study aimed to obtain the pharmacokinetic profiles, tissue distribution and plasma protein binding of C2 in Wistar Rats. Additionally, an HPLC method was developed and validated to quantify C2 in rat plasma. The pharmacokinetic profiles of intragastric, intravenous and intraperitoneal administration routes at singles doses of 100, 50, and 100 mg/kg, respectively, were studied in Wistar rats. The elimination half-life of intravenously administered C2 was approximately 33 min. The maximum plasma level of C2 was reached approximately 24 min after intragastric administration, with a Cmax value of 2.5 g/mL and an AUCtot value of 157 µg min-1/mL; the oral bioavailability was approximately 13%. Following a single intragastric or oral dose (100 mg/kg), C2 was distributed and detected in all examined tissues (including the brain and colon). The results showed that C2 accumulates over time. The plasma protein binding results indicated that the unbound fraction of C2 at concentrations of 1 to 20 µg/mL ranged from 89.8% to 92.5%, meaning that this fraction of C2 is available to cross tissues. Finally, the blood-plasma partitioning (BP ratio) of C2 in rat plasma was 0.71 and 0.6 at concentrations of 5 and 10 µg/mL, respectively, which indicates that C2 is free in the plasmatic phase and not inside blood cells. The results of this study suggest that a fraction of the administered C2 dose is absorbed in the stomach, and the fraction that is not absorbed reaches the small intestine and colon. This distribution constitutes the main advantage of C2 compared with 5-ASA for the treatment of ulcerative colitis (UC) and Crohn's disease (CD).


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Mesalamine/pharmacokinetics , Administration, Intravenous , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Chromatography, High Pressure Liquid , Drug Monitoring , Drug Stability , Male , Mesalamine/administration & dosage , Mesalamine/chemical synthesis , Rats , Rats, Wistar , Reproducibility of Results , Sensitivity and Specificity
8.
Biomed Chromatogr ; 29(4): 523-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25137440

ABSTRACT

A simple and specific bioanalytical method based on reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with ultraviolet detection was developed and validated for the determination of a novel valproic acid arylamide, N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA) in rat hepatic microsomes (a subcellular fraction containing phase I enzymes, especially cytochrome P450). The chromatographic separation was achieved using a reversed-phase Zorbax SB-C18 column and a mobile phase of acetic acid in water (0.2% v/v) and acetonitrile (40:60 v/v) with a flow rate of 0.5 mL/min. The calibration curve was linear over the range of 882-7060 ng/mL (r(2) = 0.9987), and the lower limit of quantification and the lower limit of determination were found to be 882 and 127.99 ng/mL, respectively. The method was validated with excellent sensitivity, and intra-day accuracy and precision varied from 93.79 to 93.12%, and from 2.12 to 4.36%, respectively. The inter-day accuracy and precision ranged from 93.29 to 97.30% and from 0.68 to 3.60%, respectively. The recovery of HO-AAVPA was measured between 91.36 and 97.98%. The assay was successfully applied to the analysis of kinetic metabolism and pharmacokinetic parameters in vitro by a substrate depletion approach.


Subject(s)
Anticonvulsants/analysis , Chromatography, Reverse-Phase/methods , Microsomes, Liver/chemistry , Valproic Acid/analysis , Animals , Anticonvulsants/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Male , Rats , Rats, Sprague-Dawley , Valproic Acid/pharmacokinetics
9.
Arch Pharm Res ; 34(2): 181-9, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21380799

ABSTRACT

In this study we report the synthesis and preliminary evaluation of a series of six 2-aryl-5(6)-nitro-1H-benzimidazole derivatives (1-6) as potential anticancer agents. Cytotoxicity was evaluated against seven human neoplastic cell lines using the MTT assay. Compound 6 [2-(4-chloro-3-nitrophenyl)-5(6)-nitro-1H-benzimidazole] was the most active of the series, showing an IC(50) of 28 nM against the A549 cell line. This compound displayed a selective in vitro cytotoxic activity index (>700) in non neoplastic HACAT cells (IC(50) = 22.2 µM). Compounds 3 and 6 induce arrest in the S phase of the cell cycle, and compounds 1-6 induce apoptosis in the K562 cell line. Compound 6 induces poly (ADP-ribose) polymerase (PARP) inhibition activity as a potential mechanism of action. These results suggest that compound 6 could be a potent anticancer agent. Compound 3 displayed the best inhibitory activity against PARP with an IC(50) value of 0.05 µM, compared to the activity shown by the positive control 3-aminobenzamide (IC(50) = 28.5 µM).


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Cell Cycle/drug effects , Poly(ADP-ribose) Polymerase Inhibitors , Antineoplastic Agents/chemistry , Benzamides/pharmacology , Benzimidazoles/chemistry , Cell Line , Cell Line, Tumor , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Molecular Structure , Molecular Targeted Therapy , Nitro Compounds/chemical synthesis , Nitro Compounds/chemistry , Nitro Compounds/pharmacology , Nitrobenzenes/chemical synthesis , Nitrobenzenes/chemistry , Nitrobenzenes/pharmacology , Poly(ADP-ribose) Polymerases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...