Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Front Immunol ; 14: 1080154, 2023.
Article in English | MEDLINE | ID: mdl-36911711

ABSTRACT

Introduction: Immunoglobulin A (IgA) is the main antibody isotype in body fluids such as tears, intestinal mucous, colostrum, and saliva. There are two subtypes of IgA in humans: IgA1, mainly present in blood and mucosal sites, and IgA2, preferentially expressed in mucosal sites like the colon. In clinical practice, immunoglobulins are typically measured in venous or capillary blood; however, alternative samples, including saliva, are now being considered, given their non-invasive and easy collection nature. Several autoimmune diseases have been related to diverse abnormalities in oral mucosal immunity, such as rheumatoid arthritis, Sjogren's syndrome, and systemic lupus erythematosus (SLE). Methods: We decided to evaluate the levels of both IgA subtypes in the saliva of SLE patients. A light chain capture-based ELISA measured specific IgA1 and IgA2 levels in a cohort of SLE patients compared with age and gender-matched healthy volunteers. Results: Surprisingly, our results indicated that in the saliva of SLE patients, total IgA and IgA1 subtype were significantly elevated; we also found that salivary IgA levels, particularly IgA2, positively correlate with anti-dsDNA IgG antibody titers. Strikingly, we also detected the presence of salivary anti-nucleosome IgA antibodies in SLE patients, a feature not previously reported elsewhere. Conclusions: According to our results and upon necessary validation, IgA characterization in saliva could represent a potentially helpful tool in the clinical care of SLE patients with the advantage of being a more straightforward, faster, and safer method than manipulating blood samples.


Subject(s)
Immunoglobulin A, Secretory , Lupus Erythematosus, Systemic , Humans , Immunoglobulin A , Immunoglobulin G , Mouth Mucosa , Biomarkers
2.
Infect Dis (Lond) ; 55(4): 243-254, 2023 04.
Article in English | MEDLINE | ID: mdl-36637466

ABSTRACT

BACKGROUND: Currently, there is scant information regarding the features associated to the persistence of post-COVID-19 syndrome, which is the main aim of the present study. METHODS: A cohort study of 102 COVID-19 patients was conducted. The post-COVID-19 symptoms were assessed by a standardised questionnaire. Lymphocyte immunophenotyping was performed by flow cytometry and chemokines/cytokines, neutrophil extracellular traps, the tripartite motif 63, anti-cellular, and anti-SARS-CoV-2 IgG antibodies were addressed in serum. The primary outcome was the persistence of post-COVID-19 syndrome after six months follow-up. RESULTS: Thirteen patients (12.7%) developed the primary outcome and had a more frequent history of post-COVID-19 syndrome 3 months after infection onset (p = .044), increased levels of IL-1α (p = .011) and IP-10 (p = .037) and increased CD57 expression in CD8+ T cells (p = .003). There was a trend towards higher levels of IFN-γ (p = .051), IL-1ß (p = .062) and IL-6 (p = .087). The history of post COVID-19 in the previous 3 months, obesity, baseline serum MIP-1α and IP-10, and CD57 expression in CD8+ T cells were independently associated with the persistence of post-COVID-19 syndrome. CONCLUSION: Our data suggest an important relationship between a pro-inflammatory state mediated through metabolic pathways related to obesity and increased cellular senescence as a key element in the persistence of post-COVID-19 syndrome at six months of follow-up.


Subject(s)
COVID-19 , Humans , COVID-19/complications , Pilot Projects , Post-Acute COVID-19 Syndrome , CD8-Positive T-Lymphocytes , Cohort Studies , Chemokine CXCL10 , Obesity
3.
Front Immunol ; 13: 943563, 2022.
Article in English | MEDLINE | ID: mdl-36045688

ABSTRACT

Background: Until now, most of the research addressing long-term humoral responses in coronavirus disease 2019 (COVID-19) had only evaluated the serum titers of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgGs, without the assessment of the baseline antiviral clinical and immune profile, which is the aim of this study and may be the key factor leading to a broad and sustained antibody response. Methods: We included 103 patients with COVID-19. When the patients sought medical attention (baseline), a blood sample was drawn to perform immunophenotype of lymphocytes by flow cytometry. The patients were assessed 15 days after baseline and then every month until the third month, followed by a last visit 6 months after recruitment. We evaluated the anti-SARS-COV-2 IgG at all time points, and the serum levels of cytokines, chemokines, anti-cellular (AC) antibodies and neutrophil extracellular traps were also assessed during the follow-up. The primary outcome of the study was the presence of a sustained immune humoral response, defined as an anti-SARS-CoV-2 IgG titer >4.99 arbitrary units/mL in at least two consecutive measures. We used generalized lineal models to assess the features associated with this outcome and to assess the effect of the changes in the cytokines and chemokines throughout time on the development of a sustained humoral immune response. Results: At baseline the features associated to a sustained immune humoral response were the diagnosis of critical disease, absolute number of lymphocytes, serum IP-10, IL-4, IL-2, regulatory T cells, CD8+ T cells, and positive AC antibodies. Critical illness and the positivity of AC antibodies were associated with a sustained humoral immune response after 3 months, whilst critical illness and serum IL-13 were the explanatory variables after 6 months. Conclusion: A sustained immune humoral response is strongly related to critical COVID-19, which is characterized by the presence of AC antibodies, quantitative abnormalities in the T cell compartment, and the serum cytokines and chemokines during acute infection and throughout time.


Subject(s)
COVID-19 , Antibodies, Viral , CD8-Positive T-Lymphocytes , Chemokines , Cohort Studies , Critical Illness , Cytokines , Humans , Immunoglobulin G , SARS-CoV-2
4.
Front Immunol ; 13: 892241, 2022.
Article in English | MEDLINE | ID: mdl-35663936

ABSTRACT

Lupus nephritis (LN) is one of the most common manifestations of systemic lupus erythematosus (SLE), characterized by abnormal B cell activation and differentiation to memory or plasma effector cells. However, the role of these cells in the pathogenesis of LN is not fully understood, as well as the effect of induction therapy on B cell subsets, possibly associated with this manifestation, like aged-associated B cells (ABCs). Consequently, we analyzed the molecules defining the ABCs subpopulation (CD11c, T-bet, and CD21) through flow cytometry of blood samples from patients with lupus presenting or not LN, following up a small sub-cohort after six months of induction therapy. The frequency of ABCs resulted higher in LN patients compared to healthy subjects. Unexpectedly, we identified a robust reduction of a CD21hi subset that was almost specific to LN patients. Moreover, several clinical and laboratory lupus features showed strong and significant correlations with this undefined B cell subpopulation. Finally, it was observed that the induction therapy affected not only the frequencies of ABCs and CD21hi subsets but also the phenotype of the CD21hi subset that expressed a higher density of CXCR5. Collectively, our results suggest that ABCs, and more importantly the CD21hi subset, may work to assess therapeutic response since the reduced frequency of CD21hi cells could be associated with the onset of LN.


Subject(s)
B-Lymphocyte Subsets , Lupus Erythematosus, Systemic , Lupus Nephritis , Renal Insufficiency , Aged , Biomarkers , CD11c Antigen , Complement System Proteins/therapeutic use , Humans , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/drug therapy , Lupus Nephritis/diagnosis
5.
J Leukoc Biol ; 112(2): 333-337, 2022 08.
Article in English | MEDLINE | ID: mdl-35199888

ABSTRACT

The contribution of B cells in COVID-19 pathogenesis, beyond the production of specific antibodies against SARS-CoV-2, is still not well understood. Since one of their most relevant functional roles includes their immune-suppressive mechanisms, we decided to evaluate one of the most recognized human B regulatory subpopulations: the IL-10+ B10 cells, during COVID-19 onset. After stimulation of PBMCs for IL-10 induction, we employed multiparametric flow cytometry to determine B10 frequencies in severe and critical COVID-19 patients and then correlated those with clinical and laboratory parameters. Compared with healthy individuals, we detected a significant reduction in the B10 subset in both patient groups, which correlates with some inflammatory parameters that define the disease severity. This evidence suggests an aberrant role of B10 cells in immune responses against SARS-CoV-2 that needs to be further explained.


Subject(s)
B-Lymphocytes, Regulatory , COVID-19 , Flow Cytometry , Humans , Interleukin-10 , SARS-CoV-2
6.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1373265

ABSTRACT

Objetivo: caracterizar la situación epidemiológica de la parasitosis intestinal en el estado Falcón en el periodo 2014 ­ 2020. Método: Descriptiva observacional documental. Resultados: Entre los agentes etiológicos más frecuentes se encontraron los protozoarios, especialmente el Blastocystis hominis (31,31%,) la Giardia lamblia (19,29%), y la Entamoeba histolytica (6,73%), por los helmintos están el Enterobius vermicularis (14,03%), el Áscaris lumbricoides (10,97%) y el Trichuris trichiura (4,49%). Conclusión: La población infantil fue la más afectada específicamente la población preescolar y en edad escolar, especialmente entre los 3 y los 9 años con un 77,76% lo cual se relaciona en forma directa por la exposición a factores de riesgo dados por los bajos niveles de higiene, además por los procesos de inmadurez en su sistema inmunológico.

7.
Inflamm Res ; 71(1): 131-140, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34850243

ABSTRACT

OBJECTIVES: The role of B cells in COVID-19, beyond the production of specific antibodies against SARS-CoV-2, is still not well understood. Here, we describe the novel landscape of circulating double-negative (DN) CD27- IgD- B cells in COVID-19 patients, representing a group of atypical and neglected subpopulations of this cell lineage. METHODS: Using multiparametric flow cytometry, we determined DN B cell subset amounts from 91 COVID-19 patients, correlated those with cytokines, clinical and laboratory parameters, and segregated them by principal components analysis. RESULTS: We detected significant increments in the DN2 and DN3 B cell subsets, while we found a relevant decrease in the DN1 B cell subpopulation, according to disease severity and patient outcomes. These DN cell numbers also appeared to correlate with pro- or anti-inflammatory signatures, respectively, and contributed to the segregation of the patients into disease severity groups. CONCLUSION: This study provides insights into DN B cell subsets' potential role in immune responses against SARS-CoV-2, particularly linked to the severity of COVID-19.


Subject(s)
COVID-19/blood , COVID-19/immunology , Immunoglobulin D/blood , SARS-CoV-2 , Tumor Necrosis Factor Receptor Superfamily, Member 7/blood , Adult , Aged , Aged, 80 and over , B-Lymphocytes/cytology , COVID-19/diagnosis , COVID-19/virology , Cell Lineage , Computational Biology , Disease Progression , Female , Humans , Male , Middle Aged , Principal Component Analysis , Prognosis , Respiration, Artificial , Severity of Illness Index , Young Adult
9.
Front Immunol ; 12: 689966, 2021.
Article in English | MEDLINE | ID: mdl-34566957

ABSTRACT

Background: Most of the explanatory and prognostic models of COVID-19 lack of a comprehensive assessment of the wide COVID-19 spectrum of abnormalities. The aim of this study was to unveil novel biological features to explain COVID-19 severity and prognosis (death and disease progression). Methods: A predictive model for COVID-19 severity in 121 patients was constructed by ordinal logistic regression calculating odds ratio (OR) with 95% confidence intervals (95% CI) for a set of clinical, immunological, metabolomic, and other biological traits. The accuracy and calibration of the model was tested with the area under the curve (AUC), Somer's D, and calibration plot. Hazard ratios with 95% CI for adverse outcomes were calculated with a Cox proportional-hazards model. Results: The explanatory variables for COVID-19 severity were the body mass index (BMI), hemoglobin, albumin, 3-Hydroxyisovaleric acid, CD8+ effector memory T cells, Th1 cells, low-density granulocytes, monocyte chemoattractant protein-1, plasma TRIM63, and circulating neutrophil extracellular traps. The model showed an outstanding performance with an optimism-adjusted AUC of 0.999, and Somer's D of 0.999. The predictive variables for adverse outcomes in COVID-19 were severe and critical disease diagnosis, BMI, lactate dehydrogenase, Troponin I, neutrophil/lymphocyte ratio, serum levels of IP-10, malic acid, 3, 4 di-hydroxybutanoic acid, citric acid, myoinositol, and cystine. Conclusions: Herein, we unveil novel immunological and metabolomic features associated with COVID-19 severity and prognosis. Our models encompass the interplay among innate and adaptive immunity, inflammation-induced muscle atrophy and hypoxia as the main drivers of COVID-19 severity.


Subject(s)
COVID-19 , SARS-CoV-2 , Severity of Illness Index , Adult , Blood Coagulation , Body Mass Index , COVID-19/blood , COVID-19/immunology , COVID-19/metabolism , Cytokines/blood , Extracellular Traps/immunology , Female , Hemoglobins/analysis , Humans , Male , Metabolome , Middle Aged , Muscular Atrophy , Neutrophils/immunology , Phenotype , Prognosis , Serum Albumin, Human/analysis , T-Lymphocytes/immunology , Valerates/blood
10.
J Leukoc Biol ; 110(3): 425-431, 2021 09.
Article in English | MEDLINE | ID: mdl-34057753

ABSTRACT

The immune response plays a critical role in the pathophysiology of SARS-CoV-2 infection ranging from protection to tissue damage and all occur in the development of acute respiratory distress syndrome (ARDS). ARDS patients display elevated levels of inflammatory cytokines and innate immune cells, and T and B cell lymphocytes have been implicated in this dysregulated immune response. Mast cells are abundant resident cells of the respiratory tract and are able to release different inflammatory mediators rapidly following stimulation. Recently, mast cells have been associated with tissue damage during viral infections, but their role in SARS-CoV-2 infection remains unclear. In this study, we examined the profile of mast cell activation markers in the serum of COVID-19 patients. We noticed that SARS-CoV-2-infected patients showed increased carboxypeptidase A3 (CPA3) and decreased serotonin levels in their serum when compared with symptomatic SARS-CoV-2-negative patients. CPA3 levels correlated with C-reactive protein, the number of circulating neutrophils, and quick SOFA. CPA3 in serum was a good biomarker for identifying severe COVID-19 patients, whereas serotonin was a good predictor of SARS-CoV-2 infection. In summary, our results show that serum CPA3 and serotonin levels are relevant biomarkers during SARS-CoV-2 infection. This suggests that mast cells and basophils are relevant players in the inflammatory response in COVID-19 and may represent targets for therapeutic intervention.


Subject(s)
COVID-19/diagnosis , Carboxypeptidases A/metabolism , Inflammation Mediators/metabolism , Inflammation/diagnosis , Mast Cells/immunology , SARS-CoV-2/isolation & purification , Serotonin/metabolism , Biomarkers/analysis , COVID-19/complications , COVID-19/metabolism , COVID-19/virology , Humans , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Mast Cells/pathology , Severity of Illness Index
11.
Sci Rep ; 11(1): 6350, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737694

ABSTRACT

We identified the main changes in serum metabolites associated with severe (n = 46) and mild (n = 19) COVID-19 patients by gas chromatography coupled to mass spectrometry. The modified metabolic profiles were associated to an altered amino acid catabolism in hypoxic conditions. Noteworthy, three α-hydroxyl acids of amino acid origin increased with disease severity and correlated with altered oxygen saturation levels and clinical markers of lung damage. We hypothesize that the enzymatic conversion of α-keto-acids to α- hydroxyl-acids helps to maintain NAD recycling in patients with altered oxygen levels, highlighting the potential relevance of amino acid supplementation during SARS-CoV-2 infection.


Subject(s)
Amino Acids/metabolism , COVID-19/metabolism , Oxygen/metabolism , Adult , Case-Control Studies , Female , Homeostasis , Humans , Male , Metabolomics , Middle Aged , Mitochondria/metabolism
12.
Front Immunol ; 11: 611004, 2020.
Article in English | MEDLINE | ID: mdl-33343585

ABSTRACT

Background: SARS-CoV-2 infection represents a global health problem that has affected millions of people. The fine host immune response and its association with the disease course have not yet been fully elucidated. Consequently, we analyze circulating B cell subsets and their possible relationship with COVID-19 features and severity. Methods: Using a multiparametric flow cytometric approach, we determined B cell subsets frequencies from 52 COVID-19 patients, grouped them by hierarchical cluster analysis, and correlated their values with clinical data. Results: The frequency of CD19+ B cells is increased in severe COVID-19 compared to mild cases. Specific subset frequencies such as transitional B cell subsets increase in mild/moderate cases but decrease with the severity of the disease. Memory B compartment decreased in severe and critical cases, and antibody-secreting cells are increased according to the severity of the disease. Other non-typical subsets such as double-negative B cells also showed significant changes according to disease severity. Globally, these differences allow us to identify severity-associated patient clusters with specific altered subsets. Finally, respiratory parameters, biomarkers of inflammation, and clinical scores exhibited correlations with some of these subpopulations. Conclusions: The severity of COVID-19 is accompanied by changes in the B cell subpopulations, either immature or terminally differentiated. Furthermore, the existing relationship of B cell subset frequencies with clinical and laboratory parameters suggest that these lymphocytes could serve as potential biomarkers and even active participants in the adaptive antiviral response mounted against SARS-CoV-2.


Subject(s)
B-Lymphocyte Subsets , COVID-19 , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , B-Lymphocyte Subsets/pathology , COVID-19/blood , COVID-19/immunology , COVID-19/pathology , Female , Flow Cytometry , Humans , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Severity of Illness Index
13.
FEBS J ; 287(16): 3449-3471, 2020 08.
Article in English | MEDLINE | ID: mdl-31958362

ABSTRACT

B lymphocytes are a leukocyte subset capable of developing several functions apart from differentiating into antibody-secreting cells. These processes are triggered by external activation signals that induce changes in the plasma membrane properties, regulated by the formation of different lipid-bilayer subdomains that are associated with the underlying cytoskeleton through different linker molecules, thus allowing the functional specialization of regions within the membrane. Among these, there are tetraspanin-enriched domains. Tetraspanins constitute a superfamily of transmembrane proteins that establish lateral associations with other molecules, determining its activity and localization. In this study, we identified TSPAN33 as an active player during B-lymphocyte cytoskeleton and plasma membrane-related phenomena, including protrusion formation, adhesion, phagocytosis, and cell motility. By using an overexpression model of TSPAN33 in human Raji cells, we detected a specific distribution of this protein that includes membrane microvilli, the Golgi apparatus, and extracellular vesicles. Additionally, we identified diminished phagocytic ability and altered cell adhesion properties due to the aberrant expression of integrins. Accordingly, these cells presented an enhanced migratory phenotype, as shown by its augmented chemotaxis and invasion rates. When we evaluated the mechanic response of cells during fibronectin-induced spreading, we found that TSPAN33 expression inhibited changes in roughness and membrane tension. Contrariwise, TSPAN33 knockdown cells displayed opposite phenotypes to those observed in the overexpression model. Altogether, our data indicate that TSPAN33 represents a regulatory element of the adhesion and migration of B lymphocytes, suggesting a novel implication of this tetraspanin in the control of the mechanical properties of their plasma membrane.


Subject(s)
B-Lymphocytes/metabolism , Cell Membrane/metabolism , Cell Movement/genetics , Endocytosis/genetics , Tetraspanins/genetics , B-Lymphocytes/ultrastructure , CRISPR-Cas Systems , Cell Adhesion/genetics , Cell Line, Tumor , Gene Knockdown Techniques , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Microscopy, Confocal , Microscopy, Electron , Phagocytosis/genetics , Stress, Mechanical , Tetraspanins/metabolism
14.
J Leukoc Biol ; 105(5): 843-856, 2019 05.
Article in English | MEDLINE | ID: mdl-30457676

ABSTRACT

B lymphocytes are recognized for their crucial role in the adaptive immunity since they represent the only leukocyte lineage capable of differentiating into Ab-secreting cells. However, it has been demonstrated that these lymphocytes can exert several Ab-independent functions, including engulfing and processing Ags for presentation to T cells, secreting soluble mediators, providing co-stimulatory signals, and even participating in lymphoid tissues development. Beyond that, several reports claiming the existence of multiple B cell subsets contributing directly to innate immune responses have appeared. These "innate-like" B lymphocytes, whose phenotype, development pathways, tissue distribution, and functions are in most cases notoriously different from those of conventional B cells, are crucial to early protective responses against pathogens by exerting "crossover" defensive strategies that blur the established boundaries of innate and adaptive branches of immunity. Examples of these mechanisms include the rapid secretion of the polyspecific natural Abs, increased susceptibility to innate receptors-mediated activation, cytokine secretion, downstream priming of other innate cells, usage of specific variable immunoglobulin gene-segments, and other features. As these new insights emerge, it is becoming preponderant to redefine the functionality of B cells beyond their classical adaptive-immune tasks.


Subject(s)
Antibodies/immunology , B-Lymphocyte Subsets/immunology , Cytokines/immunology , Immunity, Cellular , Immunity, Humoral , Immunity, Innate , Animals , Antibodies/genetics , Antigens, CD/genetics , Antigens, CD/immunology , B-Lymphocyte Subsets/classification , B-Lymphocyte Subsets/cytology , Cell Communication/immunology , Cell Lineage/genetics , Cell Lineage/immunology , Cytokines/genetics , Gene Expression , Humans
15.
Rev Alerg Mex ; 65(4): 400-413, 2018.
Article in Spanish | MEDLINE | ID: mdl-30602210

ABSTRACT

Immune tolerance, both to exogenous antigens and autoantigens, is essential for restraining undesired inflammatory responses that might result in severe damage to body tissues or cause chronic diseases. During the past few decades, different cell populations and molecules by them secreted have been associated with suppressing and regulatory mechanisms of immune responses. Although B cells typically acquire relevance as precursors of antibody-producing cells, they can also develop potent regulatory functions through the production of soluble molecules or by establishing direct cellular interactions mediated by different surface proteins implicated in signal transduction. While most studies of regulatory B cells define the role of these lymphocytes in autoimmune diseases, evidence of their importance and mechanisms of action in allergic diseases has accumulated in recent years. As a result, regulatory B cells appear to be relevant elements for the establishment or loss of allergen tolerance in different allergic diseases, although they still have been little explored.


La tolerancia inmunológica, tanto a los antígenos exógenos como a los autoantígenos, es esen-cial para restringir las respuestas inflamatorias no deseadas que pudieran derivar en daño grave a los tejidos del organismo o provocar enfermedades crónicas. Durante las últimas décadas, diversas poblaciones celulares y moléculas secretadas por estas se han asociado con mecanismos supresores y reguladores de las respuestas inmunes. Aunque las células B adquieren relevancia típicamente como precursores de células productoras de anticuerpos, también son capaces desarrollar potentes funciones reguladoras a través de la producción de moléculas solubles o mediante el establecimiento de interacciones celulares directas mediadas por diferentes proteínas de superficie implicadas en transducción de señales. Si bien la mayoría de los estudios de células B reguladoras definen el papel de estos linfocitos en enfermedades autoinmunes, en años recientes se ha acumulado evidencia de su importancia y mecanismos de acción en enfer-medades alérgicas. Las células reguladoras B parecen ser elementos relevantes en el establecimiento o pérdida de la tolerancia a alérgenos en diferentes enfermedades alérgicas, si bien aún han sido poco explorados.


Subject(s)
B-Lymphocytes, Regulatory/physiology , Hypersensitivity/immunology , Animals , Disease Models, Animal , Humans , Immune Tolerance
16.
Front Immunol ; 9: 3118, 2018.
Article in English | MEDLINE | ID: mdl-30687322

ABSTRACT

Intestinal macrophages are highly mobile cells with extraordinary plasticity and actively contribute to cytokine-mediated epithelial cell damage. The mechanisms triggering macrophage polarization into a proinflammatory phenotype are unknown. Here, we report that during inflammation macrophages enhance its intercellular adhesion properties in order to acquire a M1-phenotype. Using in vitro and in vivo models we demonstrate that intercellular adhesion is mediated by integrin-αVß3 and relies in the presence of the unconventional class I myosin 1F (Myo1F). Intercellular adhesion mediated by αVß3 stimulates M1-like phenotype in macrophages through hyperactivation of STAT1 and STAT3 downstream of ILK/Akt/mTOR signaling. Inhibition of integrin-αVß3, Akt/mTOR, or lack of Myo1F attenuated the commitment of macrophages into a pro-inflammatory phenotype. In a model of colitis, Myo1F deficiency strongly reduces the secretion of proinflammatory cytokines, decreases epithelial damage, ameliorates disease activity, and enhances tissue repair. Together our findings uncover an unknown role for Myo1F as part of the machinery that regulates intercellular adhesion and polarization in macrophages.


Subject(s)
Colitis, Ulcerative/immunology , Integrin alphaVbeta3/metabolism , Macrophage Activation , Macrophages/immunology , Myosin Type I/metabolism , Animals , Cell Line, Tumor , Colitis, Ulcerative/chemically induced , Cytoskeleton/immunology , Cytoskeleton/metabolism , Dextran Sulfate/administration & dosage , Dextran Sulfate/toxicity , Disease Models, Animal , Humans , Integrin alphaVbeta3/immunology , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myosin Type I/genetics , Myosin Type I/immunology , Primary Cell Culture , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...