Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
ACS Cent Sci ; 10(8): 1490-1503, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39220695

ABSTRACT

The mu opioid receptor (µOR) is a target for clinically used analgesics. However, adverse effects, such as respiratory depression and physical dependence, necessitate the development of alternative treatments. Recently we reported a novel strategy to design functionally selective opioids by targeting the sodium binding allosteric site in µOR with a supraspinally active analgesic named C6guano. Presently, to improve systemic activity of this ligand, we used structure-based design, identifying a new ligand named RO76 where the flexible alkyl linker and polar guanidine guano group is swapped with a benzyl alcohol, and the sodium site is targeted indirectly through waters. A cryoEM structure of RO76 bound to the µOR-Gi complex confirmed that RO76 interacts with the sodium site residues through a water molecule, unlike C6guano which engages the sodium site directly. Signaling assays coupled with APEX based proximity labeling show binding in the sodium pocket modulates receptor efficacy and trafficking. In mice, RO76 was systemically active in tail withdrawal assays and showed reduced liabilities compared to those of morphine. In summary, we show that targeting water molecules in the sodium binding pocket may be an avenue to modulate signaling properties of opioids, and which may potentially be extended to other G-protein coupled receptors where this site is conserved.

2.
Annu Rev Biochem ; 93(1): 389-410, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38594926

ABSTRACT

Molecular docking has become an essential part of a structural biologist's and medicinal chemist's toolkits. Given a chemical compound and the three-dimensional structure of a molecular target-for example, a protein-docking methods fit the compound into the target, predicting the compound's bound structure and binding energy. Docking can be used to discover novel ligands for a target by screening large virtual compound libraries. Docking can also provide a useful starting point for structure-based ligand optimization or for investigating a ligand's mechanism of action. Advances in computational methods, including both physics-based and machine learning approaches, as well as in complementary experimental techniques, are making docking an even more powerful tool. We review how docking works and how it can drive drug discovery and biological research. We also describe its current limitations and ongoing efforts to overcome them.


Subject(s)
Drug Discovery , Molecular Docking Simulation , Protein Binding , Proteins , Ligands , Drug Discovery/methods , Humans , Proteins/chemistry , Proteins/metabolism , Machine Learning , Binding Sites , Drug Design
3.
Nat Struct Mol Biol ; 31(4): 667-677, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38326651

ABSTRACT

The orphan G protein-coupled receptor (GPCR) GPR161 plays a central role in development by suppressing Hedgehog signaling. The fundamental basis of how GPR161 is activated remains unclear. Here, we determined a cryogenic-electron microscopy structure of active human GPR161 bound to heterotrimeric Gs. This structure revealed an extracellular loop 2 that occupies the canonical GPCR orthosteric ligand pocket. Furthermore, a sterol that binds adjacent to transmembrane helices 6 and 7 stabilizes a GPR161 conformation required for Gs coupling. Mutations that prevent sterol binding to GPR161 suppress Gs-mediated signaling. These mutants retain the ability to suppress GLI2 transcription factor accumulation in primary cilia, a key function of ciliary GPR161. By contrast, a protein kinase A-binding site in the GPR161 C terminus is critical in suppressing GLI2 ciliary accumulation. Our work highlights how structural features of GPR161 interface with the Hedgehog pathway and sets a foundation to understand the role of GPR161 function in other signaling pathways.


Subject(s)
Hedgehog Proteins , Signal Transduction , Humans , Hedgehog Proteins/genetics , Receptors, G-Protein-Coupled/metabolism , Mutation , Cilia/metabolism
4.
Elife ; 122024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345841

ABSTRACT

CLC-2 is a voltage-gated chloride channel that contributes to electrical excitability and ion homeostasis in many different tissues. Among the nine mammalian CLC homologs, CLC-2 is uniquely activated by hyperpolarization, rather than depolarization, of the plasma membrane. The molecular basis for the divergence in polarity of voltage gating among closely related homologs has been a long-standing mystery, in part because few CLC channel structures are available. Here, we report cryoEM structures of human CLC-2 at 2.46 - 2.76 Å, in the presence and absence of the selective inhibitor AK-42. AK-42 binds within the extracellular entryway of the Cl--permeation pathway, occupying a pocket previously proposed through computational docking studies. In the apo structure, we observed two distinct conformations involving rotation of one of the cytoplasmic C-terminal domains (CTDs). In the absence of CTD rotation, an intracellular N-terminal 15-residue hairpin peptide nestles against the TM domain to physically occlude the Cl--permeation pathway. This peptide is highly conserved among species variants of CLC-2 but is not present in other CLC homologs. Previous studies suggested that the N-terminal domain of CLC-2 influences channel properties via a "ball-and-chain" gating mechanism, but conflicting data cast doubt on such a mechanism, and thus the structure of the N-terminal domain and its interaction with the channel has been uncertain. Through electrophysiological studies of an N-terminal deletion mutant lacking the 15-residue hairpin peptide, we support a model in which the N-terminal hairpin of CLC-2 stabilizes a closed state of the channel by blocking the cytoplasmic Cl--permeation pathway.


Subject(s)
CLC-2 Chloride Channels , Animals , Humans , Biophysical Phenomena , CLC-2 Chloride Channels/chemistry , Electrophysiology , Mammals/metabolism , Peptides/metabolism , Cryoelectron Microscopy
5.
The Philippine Children&rsquo ; s Medical Center Journal;(2): 1-21, 2024.
Article in English | WPRIM (Western Pacific) | ID: wpr-1032229

ABSTRACT

Objectives@#This study aims to determine the healthcare workers’ (HCWs) attitudes, perceptions, and practices regarding Antimicrobial Stewardship (AMS) at the Philippine Children's Medical Center (PCMC).@*Materials and Methods@#This cross-sectional study employed a validated online survey. @*Results@#The study included 288 healthcare workers, predominantly female (77.35% ) and aged 31-40 years (47.74%), with physicians being the largest professional group (57.14%). HCWs had positive attitudes toward AMS. They perceived moderate to high antimicrobial resistance (AMR) levels in different contexts but believed the hospital had lower AMR levels than the country. HCWs agreed that AMR impacts antimicrobial choices, patient outcomes, and safety. Contributors to AMR were prescribing inappropriate antimicrobials, unnecessary prescriptions, poor patient adherence, and inadequate infection control measures. HCWs, except medical technologists, were aware of the Antimicrobial Stewardship Program (ASP) and its interventions. Only nurses and pharmacists were aware of the hospital policies against AMR. Barriers to AMS implementation include inadequate training in antimicrobial use, lack of infectious disease/ microbiology services, lack of electronic medication management services, and personnel shortages. HCWs had high self-reported AMS practices, but a practice gap in single-dose surgical antibiotic prophylaxis was identified, with low physician adherence (50.6%).@*Conclusion@#This study revealed positive attitudes and high self-reported AMS practices among HCWs. They also perceived moderate to high AMR in different contexts but believed that the hospital has lower AMR levels than the country. Addressing the identified barriers to implementation and practice gaps is crucial for achieving antimicrobial stewardship goals.


Subject(s)
Antimicrobial Stewardship , Viperidae , Health Personnel
6.
ArXiv ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38076510

ABSTRACT

Deep learning promises to dramatically improve scoring functions for molecular docking, leading to substantial advances in binding pose prediction and virtual screening. To train scoring functions-and to perform molecular docking-one must generate a set of candidate ligand binding poses. Unfortunately, the sampling protocols currently used to generate candidate poses frequently fail to produce any poses close to the correct, experimentally determined pose, unless information about the correct pose is provided. This limits the accuracy of learned scoring functions and molecular docking. Here, we describe two improved protocols for pose sampling: GLOW (auGmented sampLing with sOftened vdW potential) and a novel technique named IVES (IteratiVe Ensemble Sampling). Our benchmarking results demonstrate the effectiveness of our methods in improving the likelihood of sampling accurate poses, especially for binding pockets whose shape changes substantially when different ligands bind. This improvement is observed across both experimentally determined and AlphaFold-generated protein structures. Additionally, we present datasets of candidate ligand poses generated using our methods for each of around 5,000 protein-ligand cross-docking pairs, for training and testing scoring functions. To benefit the research community, we provide these cross-docking datasets and an open-source Python implementation of GLOW and IVES at https://github.com/drorlab/GLOW_IVES.

7.
Elife ; 122023 Dec 22.
Article in English | MEDLINE | ID: mdl-38131311

ABSTRACT

Computational prediction of protein structure has been pursued intensely for decades, motivated largely by the goal of using structural models for drug discovery. Recently developed machine-learning methods such as AlphaFold 2 (AF2) have dramatically improved protein structure prediction, with reported accuracy approaching that of experimentally determined structures. To what extent do these advances translate to an ability to predict more accurately how drugs and drug candidates bind to their target proteins? Here, we carefully examine the utility of AF2 protein structure models for predicting binding poses of drug-like molecules at the largest class of drug targets, the G-protein-coupled receptors. We find that AF2 models capture binding pocket structures much more accurately than traditional homology models, with errors nearly as small as differences between structures of the same protein determined experimentally with different ligands bound. Strikingly, however, the accuracy of ligand-binding poses predicted by computational docking to AF2 models is not significantly higher than when docking to traditional homology models and is much lower than when docking to structures determined experimentally without these ligands bound. These results have important implications for all those who might use predicted protein structures for drug discovery.


Subject(s)
Furylfuramide , Receptors, G-Protein-Coupled , Molecular Docking Simulation , Protein Binding , Receptors, G-Protein-Coupled/metabolism , Drug Discovery , Ligands , Binding Sites , Protein Conformation
8.
Nat Commun ; 14(1): 5440, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37673901

ABSTRACT

The M4 muscarinic acetylcholine receptor (M4 mAChR) has emerged as a drug target of high therapeutic interest due to its expression in regions of the brain involved in the regulation of psychosis, cognition, and addiction. The mAChR agonist, xanomeline, has provided significant improvement in the Positive and Negative Symptom Scale (PANSS) scores in a Phase II clinical trial for the treatment of patients suffering from schizophrenia. Here we report the active state cryo-EM structure of xanomeline bound to the human M4 mAChR in complex with the heterotrimeric Gi1 transducer protein. Unexpectedly, two molecules of xanomeline were found to concomitantly bind to the monomeric M4 mAChR, with one molecule bound in the orthosteric (acetylcholine-binding) site and a second molecule in an extracellular vestibular allosteric site. Molecular dynamic simulations supports the structural findings, and pharmacological validation confirmed that xanomeline acts as a dual orthosteric and allosteric ligand at the human M4 mAChR. These findings provide a basis for further understanding xanomeline's complex pharmacology and highlight the myriad of ways through which clinically relevant ligands can bind to and regulate GPCRs.


Subject(s)
Behavior, Addictive , Humans , Allosteric Site , Brain , Cognition
9.
bioRxiv ; 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37645874

ABSTRACT

The goal of designing safer, more effective drugs has led to tremendous interest in molecular mechanisms through which ligands can precisely manipulate signaling of G-protein-coupled receptors (GPCRs), the largest class of drug targets. Decades of research have led to the widely accepted view that all agonists-ligands that trigger GPCR activation-function by causing rearrangement of the GPCR's transmembrane helices, opening an intracellular pocket for binding of transducer proteins. Here we demonstrate that certain agonists instead trigger activation of free fatty acid receptor 1 by directly rearranging an intracellular loop that interacts with transducers. We validate the predictions of our atomic-level simulations by targeted mutagenesis; specific mutations which disrupt interactions with the intracellular loop convert these agonists into inverse agonists. Further analysis suggests that allosteric ligands could regulate signaling of many other GPCRs via a similar mechanism, offering rich possibilities for precise control of pharmaceutically important targets.

10.
bioRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37645939

ABSTRACT

CLC-2 is a voltage-gated chloride channel that contributes to electrical excitability and ion homeostasis in many different mammalian tissues and cell types. Among the nine mammalian CLC homologs, CLC-2 is uniquely activated by hyperpolarization, rather than depolarization, of the plasma membrane. The molecular basis for the divergence in polarity of voltage gating mechanisms among closely related CLC homologs has been a long-standing mystery, in part because few CLC channel structures are available, and those that exist exhibit high conformational similarity. Here, we report cryoEM structures of human CLC-2 at 2.46 - 2.76 Å, in the presence and absence of the potent and selective inhibitor AK-42. AK-42 binds within the extracellular entryway of the Cl--permeation pathway, occupying a pocket previously proposed through computational docking studies. In the apo structure, we observed two distinct apo conformations of CLC-2 involving rotation of one of the cytoplasmic C-terminal domains (CTDs). In the absence of CTD rotation, an intracellular N-terminal 15-residue hairpin peptide nestles against the TM domain to physically occlude the Cl--permeation pathway from the intracellular side. This peptide is highly conserved among species variants of CLC-2 but is not present in any other CLC homologs. Previous studies suggested that the N-terminal domain of CLC-2 influences channel properties via a "ball-and-chain" gating mechanism, but conflicting data cast doubt on such a mechanism, and thus the structure of the N-terminal domain and its interaction with the channel has been uncertain. Through electrophysiological studies of an N-terminal deletion mutant lacking the 15-residue hairpin peptide, we show that loss of this short sequence increases the magnitude and decreases the rectification of CLC-2 currents expressed in mammalian cells. Furthermore, we show that with repetitive hyperpolarization WT CLC-2 currents increase in resemblance to the hairpin-deleted CLC-2 currents. These functional results combined with our structural data support a model in which the N-terminal hairpin of CLC-2 stabilizes a closed state of the channel by blocking the cytoplasmic Cl--permeation pathway.

11.
Cell ; 186(20): 4325-4344.e26, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37652010

ABSTRACT

KCR channelrhodopsins (K+-selective light-gated ion channels) have received attention as potential inhibitory optogenetic tools but more broadly pose a fundamental mystery regarding how their K+ selectivity is achieved. Here, we present 2.5-2.7 Å cryo-electron microscopy structures of HcKCR1 and HcKCR2 and of a structure-guided mutant with enhanced K+ selectivity. Structural, electrophysiological, computational, spectroscopic, and biochemical analyses reveal a distinctive mechanism for K+ selectivity; rather than forming the symmetrical filter of canonical K+ channels achieving both selectivity and dehydration, instead, three extracellular-vestibule residues within each monomer form a flexible asymmetric selectivity gate, while a distinct dehydration pathway extends intracellularly. Structural comparisons reveal a retinal-binding pocket that induces retinal rotation (accounting for HcKCR1/HcKCR2 spectral differences), and design of corresponding KCR variants with increased K+ selectivity (KALI-1/KALI-2) provides key advantages for optogenetic inhibition in vitro and in vivo. Thus, discovery of a mechanism for ion-channel K+ selectivity also provides a framework for next-generation optogenetics.


Subject(s)
Channelrhodopsins , Rhinosporidium , Humans , Channelrhodopsins/chemistry , Channelrhodopsins/genetics , Channelrhodopsins/metabolism , Channelrhodopsins/ultrastructure , Cryoelectron Microscopy , Ion Channels , Potassium/metabolism , Rhinosporidium/chemistry
12.
Nat Methods ; 20(7): 1104-1113, 2023 07.
Article in English | MEDLINE | ID: mdl-37429962

ABSTRACT

Genetically encoded voltage indicators (GEVIs) enable optical recording of electrical signals in the brain, providing subthreshold sensitivity and temporal resolution not possible with calcium indicators. However, one- and two-photon voltage imaging over prolonged periods with the same GEVI has not yet been demonstrated. Here, we report engineering of ASAP family GEVIs to enhance photostability by inversion of the fluorescence-voltage relationship. Two of the resulting GEVIs, ASAP4b and ASAP4e, respond to 100-mV depolarizations with ≥180% fluorescence increases, compared with the 50% fluorescence decrease of the parental ASAP3. With standard microscopy equipment, ASAP4e enables single-trial detection of spikes in mice over the course of minutes. Unlike GEVIs previously used for one-photon voltage recordings, ASAP4b and ASAP4e also perform well under two-photon illumination. By imaging voltage and calcium simultaneously, we show that ASAP4b and ASAP4e can identify place cells and detect voltage spikes with better temporal resolution than commonly used calcium indicators. Thus, ASAP4b and ASAP4e extend the capabilities of voltage imaging to standard one- and two-photon microscopes while improving the duration of voltage recordings.


Subject(s)
Brain , Calcium , Animals , Mice , Lighting , Microscopy , Photons
13.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37292845

ABSTRACT

The orphan G protein-coupled receptor (GPCR) GPR161 is enriched in primary cilia, where it plays a central role in suppressing Hedgehog signaling1. GPR161 mutations lead to developmental defects and cancers2,3,4. The fundamental basis of how GPR161 is activated, including potential endogenous activators and pathway-relevant signal transducers, remains unclear. To elucidate GPR161 function, we determined a cryogenic-electron microscopy structure of active GPR161 bound to the heterotrimeric G protein complex Gs. This structure revealed an extracellular loop 2 that occupies the canonical GPCR orthosteric ligand pocket. Furthermore, we identify a sterol that binds to a conserved extrahelical site adjacent to transmembrane helices 6 and 7 and stabilizes a GPR161 conformation required for Gs coupling. Mutations that prevent sterol binding to GPR161 suppress cAMP pathway activation. Surprisingly, these mutants retain the ability to suppress GLI2 transcription factor accumulation in cilia, a key function of ciliary GPR161 in Hedgehog pathway suppression. By contrast, a protein kinase A-binding site in the GPR161 C-terminus is critical in suppressing GLI2 ciliary accumulation. Our work highlights how unique structural features of GPR161 interface with the Hedgehog pathway and sets a foundation to understand the broader role of GPR161 function in other signaling pathways.

14.
Proteins ; 91(8): 1089-1096, 2023 08.
Article in English | MEDLINE | ID: mdl-37158708

ABSTRACT

Machine learning research concerning protein structure has seen a surge in popularity over the last years with promising advances for basic science and drug discovery. Working with macromolecular structure in a machine learning context requires an adequate numerical representation, and researchers have extensively studied representations such as graphs, discretized 3D grids, and distance maps. As part of CASP14, we explored a new and conceptually simple representation in a blind experiment: atoms as points in 3D, each with associated features. These features-initially just the basic element type of each atom-are updated through a series of neural network layers featuring rotation-equivariant convolutions. Starting from all atoms, we further aggregate information at the level of alpha carbons before making a prediction at the level of the entire protein structure. We find that this approach yields competitive results in protein model quality assessment despite its simplicity and despite the fact that it incorporates minimal prior information and is trained on relatively little data. Its performance and generality are particularly noteworthy in an era where highly complex, customized machine learning methods such as AlphaFold 2 have come to dominate protein structure prediction.


Subject(s)
Neural Networks, Computer , Proteins , Rotation , Proteins/chemistry , Machine Learning , Drug Discovery
16.
Nat Commun ; 14(1): 2672, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37160876

ABSTRACT

Endocannabinoids (eCBs) are endogenous ligands of the cannabinoid receptor 1 (CB1), a G protein-coupled receptor that regulates a number of therapeutically relevant physiological responses. Hence, understanding the structural and functional consequences of eCB-CB1 interactions has important implications for designing effective drugs targeting this receptor. To characterize the molecular details of eCB interaction with CB1, we utilized AMG315, an analog of the eCB anandamide to determine the structure of the AMG315-bound CB1 signaling complex. Compared to previous structures, the ligand binding pocket shows some differences. Using docking, molecular dynamics simulations, and signaling assays we investigated the functional consequences of ligand interactions with the "toggle switch" residues F2003.36 and W3566.48. Further, we show that ligand-TM2 interactions drive changes to residues on the intracellular side of TM2 and are a determinant of efficacy in activating G protein. These intracellular TM2 rearrangements are unique to CB1 and are exploited by a CB1-specific allosteric modulator.


Subject(s)
Biological Assay , Endocannabinoids , Ligands , Gene Rearrangement , Molecular Dynamics Simulation
17.
Nat Commun ; 14(1): 2138, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37059717

ABSTRACT

G protein-coupled receptors (GPCRs) within the same subfamily often share high homology in their orthosteric pocket and therefore pose challenges to drug development. The amino acids that form the orthosteric binding pocket for epinephrine and norepinephrine in the ß1 and ß2 adrenergic receptors (ß1AR and ß2AR) are identical. Here, to examine the effect of conformational restriction on ligand binding kinetics, we synthesized a constrained form of epinephrine. Surprisingly, the constrained epinephrine exhibits over 100-fold selectivity for the ß2AR over the ß1AR. We provide evidence that the selectivity may be due to reduced ligand flexibility that enhances the association rate for the ß2AR, as well as a less stable binding pocket for constrained epinephrine in the ß1AR. The differences in the amino acid sequence of the extracellular vestibule of the ß1AR allosterically alter the shape and stability of the binding pocket, resulting in a marked difference in affinity compared to the ß2AR. These studies suggest that for receptors containing identical binding pocket residues, the binding selectivity may be influenced in an allosteric manner by surrounding residues, like those of the extracellular loops (ECLs) that form the vestibule. Exploiting these allosteric influences may facilitate the development of more subtype-selective ligands for GPCRs.


Subject(s)
Catecholamines , Receptors, Adrenergic, beta-2 , Ligands , Receptors, Adrenergic, beta-2/metabolism , Epinephrine/pharmacology , Amino Acid Sequence
19.
Nat Commun ; 14(1): 1338, 2023 03 11.
Article in English | MEDLINE | ID: mdl-36906681

ABSTRACT

The κ-opioid receptor (KOR) has emerged as an attractive drug target for pain management without addiction, and biased signaling through particular pathways of KOR may be key to maintaining this benefit while minimizing side-effect liabilities. As for most G protein-coupled receptors (GPCRs), however, the molecular mechanisms of ligand-specific signaling at KOR have remained unclear. To better understand the molecular determinants of KOR signaling bias, we apply structure determination, atomic-level molecular dynamics (MD) simulations, and functional assays. We determine a crystal structure of KOR bound to the G protein-biased agonist nalfurafine, the first approved KOR-targeting drug. We also identify an arrestin-biased KOR agonist, WMS-X600. Using MD simulations of KOR bound to nalfurafine, WMS-X600, and a balanced agonist U50,488, we identify three active-state receptor conformations, including one that appears to favor arrestin signaling over G protein signaling and another that appears to favor G protein signaling over arrestin signaling. These results, combined with mutagenesis validation, provide a molecular explanation of how agonists achieve biased signaling at KOR.


Subject(s)
Morphinans , Receptors, Opioid, kappa , Receptors, Opioid, kappa/metabolism , GTP-Binding Proteins/metabolism , Arrestin/metabolism , Analgesics, Opioid
20.
Nat Chem Biol ; 19(7): 805-814, 2023 07.
Article in English | MEDLINE | ID: mdl-36782010

ABSTRACT

A drug's selectivity for target receptors is essential to its therapeutic utility, but achieving selectivity between similar receptors is challenging. The serendipitous discovery of ligands that stimulate target receptors more strongly than closely related receptors, despite binding with similar affinities, suggests a solution. The molecular mechanism of such 'efficacy-driven selectivity' has remained unclear, however, hindering design of such ligands. Here, using atomic-level simulations, we reveal the structural basis for the efficacy-driven selectivity of a long-studied clinical drug candidate, xanomeline, between closely related muscarinic acetylcholine receptors (mAChRs). Xanomeline's binding mode is similar across mAChRs in their inactive states but differs between mAChRs in their active states, with divergent effects on active-state stability. We validate this mechanism experimentally and use it to design ligands with altered efficacy-driven selectivity. Our results suggest strategies for the rational design of ligands that achieve efficacy-driven selectivity for many pharmaceutically important G-protein-coupled receptors.


Subject(s)
Receptors, Muscarinic , Thiadiazoles , Ligands , Receptors, Muscarinic/chemistry , Receptors, Muscarinic/metabolism , Pyridines , Thiadiazoles/chemistry , Receptors, G-Protein-Coupled/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL