Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Nat Methods ; 16(10): 987-990, 2019 10.
Article in English | MEDLINE | ID: mdl-31501547

ABSTRACT

Spatial and molecular characteristics determine tissue function, yet high-resolution methods to capture both concurrently are lacking. Here, we developed high-definition spatial transcriptomics, which captures RNA from histological tissue sections on a dense, spatially barcoded bead array. Each experiment recovers several hundred thousand transcript-coupled spatial barcodes at 2-µm resolution, as demonstrated in mouse brain and primary breast cancer. This opens the way to high-resolution spatial analysis of cells and tissues.


Subject(s)
Gene Expression Profiling , Transcriptome , Animals , Breast Neoplasms/pathology , Female , Humans , Mice , Olfactory Bulb/cytology , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Tissue Array Analysis
2.
Biotechnol J ; 14(1): e1800195, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29799175

ABSTRACT

Patient X: A 67-year-old Caucasian man slips on a patch of ice. He has abrasions to his hands and has sustained significant damage to his hip. At the emergency room, he informs clinicians he takes atorvastatin, metformin, and glimepiride to treat hypertension and Type 2 Diabetes Mellitus (T2DM). X-rays reveal a fractured hip, which will require total hip replacement surgery.


Subject(s)
Biotechnology/methods , Public Health , Gene Editing , Humans , Precision Medicine , Tissue Engineering
3.
Front Plant Sci ; 9: 324, 2018.
Article in English | MEDLINE | ID: mdl-29593773

ABSTRACT

Ban-Lan-Gen, the root tissues derived from several morphologically indistinguishable plant species, have been used widely in traditional Chinese medicines for numerous years. The identification of reliable markers to distinguish various source plant species is critical for the effective and safe use of products containing Ban-Lan-Gen. Here, we analyzed and characterized the complete chloroplast (cp) genome sequence of Strobilanthes cusia (Nees) Kuntze to identify high-resolution markers for the species determination of Southern Ban-Lan-Gen. Total DNA was extracted and subjected to next-generation sequencing. The cp genome was then assembled, and the gaps were filled using PCR amplification and Sanger sequencing. Genome annotation was conducted using CpGAVAS web server. The genome was 144,133 bp in length, presenting a typical quadripartite structure of large (LSC; 91,666 bp) and small (SSC; 17,328 bp) single-copy regions separated by a pair of inverted repeats (IRs; 17,811 bp). The genome encodes 113 unique genes, including 79 protein-coding, 30 transfer RNA, and 4 ribosomal RNA genes. A total of 20 tandem, 2 forward, and 6 palindromic repeats were detected in the genome. A phylogenetic analysis based on 65 protein-coding genes showed that S. cusia was closely related to Andrographis paniculata and Ruellia breedlovei, which belong to the same family, Acanthaceae. One interesting feature is that the IR regions apparently undergo simultaneous contraction and expansion, resulting in the presence of single copies of rps19, rpl2, rpl23, and ycf2 in the LSC region and the duplication of psbA and trnH genes in the IRs. This study provides the first complete cp genome in the genus Strobilanthes, containing critical information for the classification of various Strobilanthes species in the future. This study also provides the foundation for precisely determining the plant sources of Ban-Lan-Gen.

5.
Nat Biotechnol ; 35(9): 852-857, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28650462

ABSTRACT

Haplotype-resolved genome sequencing promises to unlock a wealth of information in population and medical genetics. However, for the vast majority of genomes sequenced to date, haplotypes have not been determined because of cumbersome haplotyping workflows that require fractions of the genome to be sequenced in a large number of compartments. Here we demonstrate barcode partitioning of long DNA molecules in a single compartment using "on-bead" barcoded tagmentation. The key to the method that we call "contiguity preserving transposition" sequencing on beads (CPTv2-seq) is transposon-mediated transfer of homogenous populations of barcodes from beads to individual long DNA molecules that get fragmented at the same time (tagmentation). These are then processed to sequencing libraries wherein all sequencing reads originating from each long DNA molecule share a common barcode. Single-tube, bulk processing of long DNA molecules with ∼150,000 different barcoded bead types provides a barcode-linked read structure that reveals long-range molecular contiguity. This technology provides a simple, rapid, plate-scalable and automatable route to accurate, haplotype-resolved sequencing, and phasing of structural variants of the genome.


Subject(s)
DNA Barcoding, Taxonomic/methods , Genome, Human/genetics , Genomics/methods , Haplotypes/genetics , High-Throughput Nucleotide Sequencing/methods , Humans
6.
Genome Res ; 27(5): 813-823, 2017 05.
Article in English | MEDLINE | ID: mdl-28360230

ABSTRACT

The most polymorphic part of the human genome, the MHC, encodes over 160 proteins of diverse function. Half of them, including the HLA class I and II genes, are directly involved in immune responses. Consequently, the MHC region strongly associates with numerous diseases and clinical therapies. Notoriously, the MHC region has been intractable to high-throughput analysis at complete sequence resolution, and current reference haplotypes are inadequate for large-scale studies. To address these challenges, we developed a method that specifically captures and sequences the 4.8-Mbp MHC region from genomic DNA. For 95 MHC homozygous cell lines we assembled, de novo, a set of high-fidelity contigs and a sequence scaffold, representing a mean 98% of the target region. Included are six alternative MHC reference sequences of the human genome that we completed and refined. Characterization of the sequence and structural diversity of the MHC region shows the approach accurately determines the sequences of the highly polymorphic HLA class I and HLA class II genes and the complex structural diversity of complement factor C4A/C4B It has also uncovered extensive and unexpected diversity in other MHC genes; an example is MUC22, which encodes a lung mucin and exhibits more coding sequence alleles than any HLA class I or II gene studied here. More than 60% of the coding sequence alleles analyzed were previously uncharacterized. We have created a substantial database of robust reference MHC haplotype sequences that will enable future population scale studies of this complicated and clinically important region of the human genome.


Subject(s)
Complement C4/genetics , Genes, MHC Class II , Genes, MHC Class I , Haplotypes , Mucins/genetics , Polymorphism, Genetic , Animals , Cell Line , Contig Mapping/methods , Contig Mapping/standards , Genome, Human , Genomics/methods , Genomics/standards , Humans , Open Reading Frames , Pan troglodytes/genetics , Reference Standards
7.
Methods Mol Biol ; 1551: 207-221, 2017.
Article in English | MEDLINE | ID: mdl-28138849

ABSTRACT

Most genomes to date have been sequenced without taking into account the diploid nature of the genome. However, the distribution of variants on each individual chromosome can (1) significantly impact gene regulation and protein function, (2) have important implications for analyses of population history and medical genetics, and (3) be of great value for accurate interpretation of medically relevant genetic variation. Here, we describe a comprehensive and detailed protocol for an ultra fast (<3 h library preparation), cost-effective, and scalable haplotyping method, named Contiguity Preserving Transposition sequencing or CPT-seq (Amini et al., Nat Genet 46(12):1343-1349, 2014). CPT-seq accurately phases >95 % of the whole human genome in Mb-scale phasing blocks. Additionally, the same workflow can be used to aid de novo assembly (Adey et al., Genome Res 24(12):2041-2049, 2014), detect structural variants, and perform single cell ATAC-seq analysis (Cusanovich et al., Science 348(6237):910-914, 2015).


Subject(s)
Genome, Human/genetics , Haplotypes/genetics , High-Throughput Nucleotide Sequencing , Humans , Sequence Analysis, DNA , Single-Cell Analysis
8.
Am J Hum Genet ; 99(2): 375-91, 2016 Aug 04.
Article in English | MEDLINE | ID: mdl-27486779

ABSTRACT

The physiological functions of natural killer (NK) cells in human immunity and reproduction depend upon diverse interactions between killer cell immunoglobulin-like receptors (KIRs) and their HLA class I ligands: HLA-A, HLA-B, and HLA-C. The genomic regions containing the KIR and HLA class I genes are unlinked, structurally complex, and highly polymorphic. They are also strongly associated with a wide spectrum of diseases, including infections, autoimmune disorders, cancers, and pregnancy disorders, as well as the efficacy of transplantation and other immunotherapies. To facilitate study of these extraordinary genes, we developed a method that captures, sequences, and analyzes the 13 KIR genes and HLA-A, HLA-B, and HLA-C from genomic DNA. We also devised a bioinformatics pipeline that attributes sequencing reads to specific KIR genes, determines copy number by read depth, and calls high-resolution genotypes for each KIR gene. We validated this method by using DNA from well-characterized cell lines, comparing it to established methods of HLA and KIR genotyping, and determining KIR genotypes from 1000 Genomes sequence data. This identified 116 previously uncharacterized KIR alleles, which were all demonstrated to be authentic by sequencing from source DNA via standard methods. Analysis of just two KIR genes showed that 22% of the 1000 Genomes individuals have a previously uncharacterized allele or a structural variant. The method we describe is suited to the large-scale analyses that are needed for characterizing human populations and defining the precise HLA and KIR factors associated with disease. The methods are applicable to other highly polymorphic genes.


Subject(s)
Genes, MHC Class I/genetics , Genotype , High-Throughput Nucleotide Sequencing/methods , Receptors, KIR/genetics , Alleles , Gene Dosage , Genome, Human/genetics , HLA-A Antigens/genetics , HLA-B Antigens/genetics , HLA-C Antigens/genetics , Haplotypes , Humans , Polymorphism, Genetic
9.
Science ; 352(6293): 1586-90, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27339989

ABSTRACT

The human brain has enormously complex cellular diversity and connectivities fundamental to our neural functions, yet difficulties in interrogating individual neurons has impeded understanding of the underlying transcriptional landscape. We developed a scalable approach to sequence and quantify RNA molecules in isolated neuronal nuclei from a postmortem brain, generating 3227 sets of single-neuron data from six distinct regions of the cerebral cortex. Using an iterative clustering and classification approach, we identified 16 neuronal subtypes that were further annotated on the basis of known markers and cortical cytoarchitecture. These data demonstrate a robust and scalable method for identifying and categorizing single nuclear transcriptomes, revealing shared genes sufficient to distinguish previously unknown and orthologous neuronal subtypes as well as regional identity and transcriptomic heterogeneity within the human brain.


Subject(s)
Transcriptome , Cell Nucleus , Cerebral Cortex , Gene Expression Profiling , Humans , Neurons , Sequence Analysis, RNA
10.
Nat Biotechnol ; 33(10): 1073-5, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26414351

ABSTRACT

Techniques for measuring the motion of single motor proteins, such as FRET and optical tweezers, are limited to a resolution of ∼300 pm. We use ion current modulation through the protein nanopore MspA to observe translocation of helicase Hel308 on DNA with up to ∼40 pm sensitivity. This approach should be applicable to any protein that translocates on DNA or RNA, including helicases, polymerases, recombinases and DNA repair enzymes.


Subject(s)
DNA Helicases/chemistry , DNA/chemistry , Micromanipulation/methods , Molecular Motor Proteins/chemistry , Nanopores/ultrastructure , DNA/ultrastructure , DNA Helicases/ultrastructure , Elastic Modulus , Materials Testing/methods , Molecular Motor Proteins/ultrastructure , Motion , Nanotechnology/methods , Protein Binding , Stress, Mechanical
11.
Immunogenetics ; 67(9): 479-85, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26198775

ABSTRACT

The HLA region of chromosome 6 contains the most polymorphic genes in humans. Spanning ~5 Mbp the densely packed region encompasses approximately 175 expressed genes including the highly polymorphic HLA class I and II loci. Most of the other genes and functional elements are also polymorphic, and many of them are directly implicated in immune function or immune-related disease. For these reasons, this complex genomic region is subject to intense scrutiny by researchers with the common goal of aiding further understanding and diagnoses of multiple immune-related diseases and syndromes. To aid assay development and characterization of the classical loci, a panel of cell lines partially or fully homozygous for HLA class I and II was assembled over time by the International Histocompatibility Working Group (IHWG). Containing a minimum of 88 unique HLA haplotypes, we show that this panel represents a significant proportion of European HLA allelic and haplotype diversity (60-95 %). Using a high-density whole genome array that includes 13,331 HLA region SNPs, we analyzed 99 IHWG cells to map the coordinates of the homozygous tracts at a fine scale. The mean homozygous tract length within chromosome 6 from these individuals is 21 Mbp. Within HLA, the mean haplotype length is 4.3 Mbp, and 65 % of the cell lines were shown to be homozygous throughout the entire region. In addition, four cell lines are homozygous throughout the complex KIR region of chromosome 19 (~250 kbp). The data we describe will provide a valuable resource for characterizing haplotypes, designing and refining imputation algorithms and developing assay controls.


Subject(s)
Genes, MHC Class II/genetics , Genes, MHC Class I/genetics , Genome, Human/genetics , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , Alleles , Asian People/genetics , B-Lymphocytes/cytology , Cell Line , Chromosomes, Human, Pair 6/genetics , Haplotypes/genetics , Humans , Polymorphism, Single Nucleotide/genetics , White People/genetics
12.
Nat Commun ; 6: 5936, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25612848

ABSTRACT

Next-generation sequencing (NGS) has transformed genomic research by decreasing the cost of sequencing. However, whole-genome sequencing is still costly and complex for diagnostics purposes. In the clinical space, targeted sequencing has the advantage of allowing researchers to focus on specific genes of interest. Routine clinical use of targeted NGS mandates inexpensive instruments, fast turnaround time and an integrated and robust workflow. Here we demonstrate a version of the Sequencing by Synthesis (SBS) chemistry that potentially can become a preferred targeted sequencing method in the clinical space. This sequencing chemistry uses natural nucleotides and is based on real-time recording of the differential polymerase/DNA-binding kinetics in the presence of correct or mismatch nucleotides. This ensemble SBS chemistry has been implemented on an existing Illumina sequencing platform with integrated cluster amplification. We discuss the advantages of this sequencing chemistry for targeted sequencing as well as its limitations for other applications.


Subject(s)
DNA-Directed DNA Polymerase/chemistry , High-Throughput Nucleotide Sequencing/instrumentation , High-Throughput Nucleotide Sequencing/methods , Nucleotides/genetics , Sequence Analysis, DNA , Bacteriophage phi X 174/genetics , Base Pair Mismatch , Base Sequence , DNA/chemistry , Equipment Design , Genome, Viral , Genomics , Kinetics , Molecular Sequence Data , Polymers
13.
Nat Genet ; 46(12): 1343-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25326703

ABSTRACT

Haplotype-resolved genome sequencing enables the accurate interpretation of medically relevant genetic variation, deep inferences regarding population history and non-invasive prediction of fetal genomes. We describe an approach for genome-wide haplotyping based on contiguity-preserving transposition (CPT-seq) and combinatorial indexing. Tn5 transposition is used to modify DNA with adaptor and index sequences while preserving contiguity. After DNA dilution and compartmentalization, the transposase is removed, resolving the DNA into individually indexed libraries. The libraries in each compartment, enriched for neighboring genomic elements, are further indexed via PCR. Combinatorial 96-plex indexing at both the transposition and PCR stage enables the construction of phased synthetic reads from each of the nearly 10,000 'virtual compartments'. We demonstrate the feasibility of this method by assembling >95% of the heterozygous variants in a human genome into long, accurate haplotype blocks (N50 = 1.4-2.3 Mb). The rapid, scalable and cost-effective workflow could enable haplotype resolution to become routine in human genome sequencing.


Subject(s)
Haplotypes , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Algorithms , Chromosome Mapping , Cluster Analysis , DNA/genetics , Female , Gene Library , Genome, Human , Genomics , Heterozygote , Humans , Male , Polymerase Chain Reaction , Reproducibility of Results , Transposases/genetics
14.
Genome Res ; 24(12): 2041-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25327137

ABSTRACT

We describe a method that exploits contiguity preserving transposase sequencing (CPT-seq) to facilitate the scaffolding of de novo genome assemblies. CPT-seq is an entirely in vitro means of generating libraries comprised of 9216 indexed pools, each of which contains thousands of sparsely sequenced long fragments ranging from 5 kilobases to > 1 megabase. These pools are "subhaploid," in that the lengths of fragments contained in each pool sums to ∼5% to 10% of the full genome. The scaffolding approach described here, termed fragScaff, leverages coincidences between the content of different pools as a source of contiguity information. Specifically, CPT-seq data is mapped to a de novo genome assembly, followed by the identification of pairs of contigs or scaffolds whose ends disproportionately co-occur in the same indexed pools, consistent with true adjacency in the genome. Such candidate "joins" are used to construct a graph, which is then resolved by a minimum spanning tree. As a proof-of-concept, we apply CPT-seq and fragScaff to substantially boost the contiguity of de novo assemblies of the human, mouse, and fly genomes, increasing the scaffold N50 of de novo assemblies by eight- to 57-fold with high accuracy. We also demonstrate that fragScaff is complementary to Hi-C-based contact probability maps, providing midrange contiguity to support robust, accurate chromosome-scale de novo genome assemblies without the need for laborious in vivo cloning steps. Finally, we demonstrate CPT-seq as a means of anchoring unplaced novel human contigs to the reference genome as well as for detecting misassembled sequences.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Transposases/metabolism , Animals , Computational Biology/methods , Gene Library , Genomics/methods , Humans , Mice , Software
15.
Sci Rep ; 4: 3595, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24399302

ABSTRACT

We aimed to identify the genetic cause of coronary artery disease (CAD) in an Iranian pedigree. Genetic linkage analysis identified three loci with an LOD score of 2.2. Twelve sequence variations identified by exome sequencing were tested for segregation with disease. A p.Val99Met causing mutation in ST6GALNAC5 was considered the likely cause of CAD. ST6GALNAC5 encodes sialyltransferase 7e. The variation affects a highly conserved amino acid, was absent in 800 controls, and was predicted to damage protein function. ST6GALNAC5 is positioned within loci previously linked to CAD-associated parameters. While hypercholesterolemia was a prominent feature in the family, clinical and genetic data suggest that this condition is not caused by the mutation in ST6GALNAC5. Sequencing of ST6GALNAC5 in 160 Iranian patients revealed a candidate causative stop-loss mutation in two other patients. The p.Val99Met and stop-loss mutations both caused increased sialyltransferase activity. Sequence data from combined Iranian and US controls and CAD affected individuals provided evidence consistent with potential role of ST6GALNAC5 in CAD. We conclude that ST6GALNAC5 mutations can cause CAD. There is substantial literature suggesting a relation between sialyltransferase and sialic acid levels and coronary disease. Our findings provide strong evidence for the existence of this relation.


Subject(s)
Coronary Artery Disease/genetics , Mutation , Sialyltransferases/genetics , Adult , Case-Control Studies , Female , Humans , Male , Middle Aged , Pedigree
16.
Proc Natl Acad Sci U S A ; 110(14): 5552-7, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23509297

ABSTRACT

Standard whole-genome genotyping technologies are unable to determine haplotypes. Here we describe a method for rapid and cost-effective long-range haplotyping. Genomic DNA is diluted and distributed into multiple aliquots such that each aliquot receives a fraction of a haploid copy. The DNA template in each aliquot is amplified by multiple displacement amplification, converted into barcoded sequencing libraries using Nextera technology, and sequenced in multiplexed pools. To assess the performance of our method, we combined two male genomic DNA samples at equal ratios, resulting in a sample with diploid X chromosomes with known haplotypes. Pools of the multiplexed sequencing libraries were subjected to targeted pull-down of a 1-Mb contiguous region of the X-chromosome Duchenne muscular dystrophy gene. We were able to phase the Duchenne muscular dystrophy region into two contiguous haplotype blocks with a mean length of 494 kb. The haplotypes showed 99% agreement with the consensus base calls made by sequencing the individual DNAs. We subsequently used the strategy to haplotype two human genomes. Standard genomic sequencing to identify all heterozygous SNPs in the sample was combined with dilution-amplification-based sequencing data to resolve the phase of identified heterozygous SNPs. Using this procedure, we were able to phase >95% of the heterozygous SNPs from the diploid sequence data. The N50 for a Yoruba male DNA was 702 kb whereas the N50 for a European female DNA was 358 kb. Therefore, the strategy described here is suitable for haplotyping of a set of targeted regions as well as of the entire genome.


Subject(s)
Genetic Techniques , Genome, Human/genetics , Haplotypes/genetics , High-Throughput Nucleotide Sequencing/methods , Nucleic Acid Amplification Techniques/methods , DNA Barcoding, Taxonomic/methods , Dystrophin/genetics , Female , Gene Library , Genotype , Humans , Male , Polymorphism, Single Nucleotide/genetics
17.
Carcinogenesis ; 34(4): 787-98, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23276797

ABSTRACT

Chronic hepatitis B virus (HBV) infection is epidemiologically associated with hepatocellular carcinoma (HCC), but its role in HCC remains poorly understood due to technological limitations. In this study, we systematically characterize HBV in HCC patients. HBV sequences were enriched from 48 HCC patients using an oligo-bead-based strategy, pooled together and sequenced using the FLX-Genome-Sequencer. In the tumors, preferential integration of HBV into promoters of genes (P < 0.001) and significant enrichment of integration into chromosome 10 (P < 0.01) were observed. Integration into chromosome 10 was significantly associated with poorly differentiated tumors (P < 0.05). Notably, in the tumors, recurrent integration into the promoter of the human telomerase reverse transcriptase (TERT) gene was found to correlate with increased TERT expression. The preferred region within the HBV genome involved in integration and viral structural alteration is at the 3'-end of hepatitis B virus X protein (HBx), where viral replication/transcription initiates. Upon integration, the 3'-end of the HBx is often deleted. HBx-human chimeric transcripts, the most common type of chimeric transcripts, can be expressed as chimeric proteins. Sequence variation resulting in non-conservative amino acid substitutions are commonly observed in HBV genome. This study highlights HBV as highly mutable in HCC patients with preferential regions within the host and virus genome for HBV integration/structural alterations.


Subject(s)
Carcinoma, Hepatocellular/virology , Hepatitis B virus/genetics , Liver Neoplasms/virology , Telomerase/genetics , Amino Acid Substitution , Base Sequence , Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/genetics , Cell Line , Chromosomes, Human, Pair 10/virology , DNA, Viral/genetics , Genetic Variation , Hepatitis B, Chronic/complications , High-Throughput Nucleotide Sequencing , Humans , Liver Neoplasms/genetics , Promoter Regions, Genetic , Sequence Analysis, DNA , Telomerase/biosynthesis , Trans-Activators/genetics , Viral Regulatory and Accessory Proteins , Virus Integration/genetics
18.
Neurobiol Aging ; 34(5): 1516.e1-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23062701

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease, and the most common in European populations. Results of genetic analysis and mutation screening of SOD1 in a cohort of 60 Iranian ALS patients are here reported. Initially, linkage analysis in 4 families identified a disease-linked locus that included the known ALS gene, SOD1. Screening of SOD1 identified homozygous p.Asp90Ala causing mutations in all the linked families. Haplotype analysis suggests that the p.Asp90Ala alleles in the Iranian patients might share a common founder with the renowned Scandinavian recessive p.Asp90Ala allele. Subsequent screening in all the patients resulted in identification of 3 other mutations in SOD1, including p.Leu84Phe in the homozygous state. Phenotypic features of the mutation-bearing patients are presented. SOD1 mutations were found in 11.7% of the cohort, 38.5% of the familial ALS probands, and 4.25% of the sporadic ALS cases. SOD1 mutations contribute significantly to ALS among Iranians.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/mortality , Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Superoxide Dismutase/genetics , Adolescent , Adult , Aged , Amyotrophic Lateral Sclerosis/diagnosis , Female , Genetic Markers/genetics , Genetic Testing , Humans , Iran/epidemiology , Male , Middle Aged , Mutation/genetics , Prevalence , Risk Factors , Superoxide Dismutase-1 , Survival Analysis , Survival Rate , Young Adult
19.
PLoS One ; 7(11): e49144, 2012.
Article in English | MEDLINE | ID: mdl-23145101

ABSTRACT

Circulating tumor cells (CTC) mediate metastatic spread of many solid tumors and enumeration of CTCs is currently used as a prognostic indicator of survival in metastatic prostate cancer patients. Some evidence suggests that it is possible to derive additional information about tumors from expression analysis of CTCs, but the technical difficulty of isolating and analyzing individual CTCs has limited progress in this area. To assess the ability of a new generation of MagSweeper to isolate intact CTCs for downstream analysis, we performed mRNA-Seq on single CTCs isolated from the blood of patients with metastatic prostate cancer and on single prostate cancer cell line LNCaP cells spiked into the blood of healthy donors. We found that the MagSweeper effectively isolated CTCs with a capture efficiency that matched the CellSearch platform. However, unlike CellSearch, the MagSweeper facilitates isolation of individual live CTCs without contaminating leukocytes. Importantly, mRNA-Seq analysis showed that the MagSweeper isolation process did not have a discernible impact on the transcriptional profile of single LNCaPs isolated from spiked human blood, suggesting that any perturbations caused by the MagSweeper process on the transcriptional signature of isolated cells are modest. Although the RNA from patient CTCs showed signs of significant degradation, consistent with reports of short half-lives and apoptosis amongst CTCs, transcriptional signatures of prostate tissue and of cancer were readily detectable with single CTC mRNA-Seq. These results demonstrate that the MagSweeper provides access to intact CTCs and that these CTCs can potentially supply clinically relevant information.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplastic Cells, Circulating , Prostatic Neoplasms , RNA, Messenger , Biomarkers, Tumor/blood , Cell Line, Tumor , Humans , Male , Metabolic Networks and Pathways , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Prognosis , Prostatic Neoplasms/blood , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Messenger/blood , RNA, Messenger/genetics , Sequence Alignment , Sequence Analysis, RNA
20.
Mol Genet Genomics ; 287(6): 485-94, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22562254

ABSTRACT

The Saccharomyces cerevisiae strains widely used for industrial fuel-ethanol production have been developed by selection, but their underlying beneficial genetic polymorphisms remain unknown. Here, we report the draft whole-genome sequence of the S. cerevisiae strain CAT-1, which is a dominant fuel-ethanol fermentative strain from the sugarcane industry in Brazil. Our results indicate that strain CAT-1 is a highly heterozygous diploid yeast strain, and the ~12-Mb genome of CAT-1, when compared with the reference S228c genome, contains ~36,000 homozygous and ~30,000 heterozygous single nucleotide polymorphisms, exhibiting an uneven distribution among chromosomes due to large genomic regions of loss of heterozygosity (LOH). In total, 58 % of the 6,652 predicted protein-coding genes of the CAT-1 genome constitute different alleles when compared with the genes present in the reference S288c genome. The CAT-1 genome contains a reduced number of transposable elements, as well as several gene deletions and duplications, especially at telomeric regions, some correlated with several of the physiological characteristics of this industrial fuel-ethanol strain. Phylogenetic analyses revealed that some genes were likely associated with traits important for bioethanol production. Identifying and characterizing the allelic variations controlling traits relevant to industrial fermentation should provide the basis for a forward genetics approach for developing better fermenting yeast strains.


Subject(s)
Biofuels , Ethanol/metabolism , Genome, Fungal , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Biotechnology , Diploidy , Fermentation/genetics , Gene Dosage , Phylogeny , Polymorphism, Single Nucleotide , Saccharomyces cerevisiae/classification , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL