Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 128(1): 89-96, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38113287

ABSTRACT

A family of nanoclusters of tetrahedral symmetry is proposed. These clusters consist of symmetrically truncated tetrahedra with additional hexagonal islands on the four facets of the starting tetrahedron. The islands are placed in stacking fault positions. The geometric magic numbers of these clusters are derived. Global optimization searches within an atomistic potential model of Pt-Pd show that the tetrahedral structures can be stabilized for intermediate compositions of these nanoalloys, even when they are not the most stable structures of the elemental clusters. These results are also confirmed by density functional theory calculations for the magic sizes 59, 100, and 180. A thermodynamic analysis by the harmonic superposition approximation shows that Pt-Pd tetrahedral nanoalloys can be stable even above room temperature.

2.
Nanoscale ; 15(46): 18891-18900, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37975176

ABSTRACT

The growth of Ag clusters on amorphous carbon substrates is studied in situ by X-ray scattering experiments, whose final outcome is imaged by electron microscopy. The real-time analysis of the growth process at room temperature shows the formation of a large majority of icosahedral structures by a shell-by-shell growth mode which produces smooth and nearly defect-free structures. Molecular dynamics simulations supported by ab initio calculations reveal that the shell-by-shell mode is possible because of the occurrence of collective displacements which involve the concerted motion of many atoms of the growing shell. These collective processes are a kind of black swan event, as they occur suddenly and rarely, but their occurrence is decisive for the final outcome of the growth. Annealing and ageing experiments show that the as-grown icosahedra are metastable, in agreement with the energetic stability calculations.

3.
Nanoscale Horiz ; 9(1): 143-147, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37877366

ABSTRACT

The multi-dimensional potential energy surface (PES) of a nanoparticle, such as a bare cluster of metal atoms, controls both the structure and dynamic behaviour of the particle. These properties are the subject of numerous theoretical simulations. However, quantitative experimental measurements of critical PES parameters are needed to regulate the models employed in the theoretical work. Experimental measurements of parameters are currently few in number, while model parameters taken from bulk systems may not be suitable for nanosystems. Here we describe a new measurement methodology, in which the isomer structures of a single deposited nanocluster are obtained frame-by-frame in an aberration-corrected scanning transmission electron microscope (ac-STEM) in high angle annular dark field (HAADF) mode. Several gold clusters containing 309 ± 15 atoms were analysed individually after deposition from a mass-selected cluster source onto an amorphous carbon film. The main isomers identified are icosahedral (Ih), decahedral (Dh) and face-centred-cubic (fcc) (the bulk structure), alongside many amorphous (glassy) structures. The results, which are broadly consistent with static ac-STEM measurements of an ensemble of such clusters, open the way to dynamic measurements of many different nanoparticles of diverse sizes, shapes and compositions.

4.
J Chem Phys ; 159(9)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37668252

ABSTRACT

Finite-temperature structures of Cu, Ag, and Au metal nanoclusters are calculated in the entire temperature range from 0 K to melting using a computational methodology that we proposed recently [M. Settem et al., Nanoscale 14, 939 (2022)]. In this method, Harmonic Superposition Approximation (HSA) and Parallel Tempering Molecular Dynamics (PTMD) are combined in a complementary manner. HSA is accurate at low temperatures and fails at higher temperatures. PTMD, on the other hand, effectively samples the high temperature region and melts. This method is used to study the size- and system-dependent competition between various structural motifs of Cu, Ag, and Au nanoclusters in the size range 1-2 nm. Results show that there are mainly three types of structural changes in metal nanoclusters, depending on whether a solid-solid transformation occurs. In the first type, the global minimum is the dominant motif in the entire temperature range. In contrast, when a solid-solid transformation occurs, the global minimum transforms either completely to a different motif or partially, resulting in the co-existence of multiple motifs. Finally, nanocluster structures are analyzed to highlight the system-specific differences across the three metals.

5.
Chem Commun (Camb) ; 59(23): 3331-3338, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36861398

ABSTRACT

In this article, we present a summary of the Faraday Discussion that took place on September 21-23, 2022 in London, UK. The primary goal of this event was to promote and discuss the recent developments in the field of nanoalloys. Here we briefly outline each scientific session as well as other conference events.

6.
J Chem Inf Model ; 63(2): 459-473, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36597194

ABSTRACT

We propose a scheme for the automatic separation (i.e., clustering) of data sets composed of several nanoparticle (NP) structures by means of Machine Learning techniques. These data sets originate from atomistic simulations, such as global optimizations searches and molecular dynamics simulations, which can produce large outputs that are often difficult to inspect by hand. By combining a description of NPs based on their local atomic environment with unsupervised learning algorithms, such as K-Means and Gaussian mixture model, we are able to distinguish between different structural motifs (e.g., icosahedra, decahedra, polyicosahedra, fcc fragments, twins, and so on). We show that this method is able to improve over the results obtained previously thanks to the successful implementation of a more detailed description of NPs, especially for systems showing a large variety of structures, including disordered ones.


Subject(s)
Algorithms , Machine Learning , Cluster Analysis , Molecular Dynamics Simulation , Unsupervised Machine Learning
9.
Nanoscale Horiz ; 7(8): 883-889, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35722927

ABSTRACT

The growth pathways from tetrahedral to multiply twinned gold nanoparticles in the gas phase are studied by molecular dynamics simulations supported by density functional theory calculations. Our results show that the growth from a tetrahedron to a multiple twin can take place by different pathways: directly from a tetrahedron to a decahedron (Th → Dh pathway), directly from a tetrahedron to an icosahedral fragment (Th → Ih), and from a tetrahedron to an icosahedron passing through an intermediate decahedron (Th → Dh → Ih). The simulations allow to determine the key atomic-level growth mechanism at the origin of twinning in metal nanoparticles. This mechanism is common to all these pathways and starts from the preferential nucleation of faulted atomic islands in the vicinity of facet edges, leading to the formation and stabilization of twin planes and of fivefold symmetry axes.


Subject(s)
Gold , Metal Nanoparticles , Molecular Dynamics Simulation
10.
Phys Chem Chem Phys ; 23(40): 23325-23335, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34633000

ABSTRACT

The lowest-energy structures of AgCu nanoalloys are searched for by global optimization algorithms for sizes 100 and 200 atoms depending on composition. Even though the AgCu system is very weakly miscible in macroscopic samples, the mixing energy for these nanoalloys turns out to be clearly negative for both sizes, a result which is attributed to the stabilization of non-crystalline Cu@Ag core-shell structures at the nanoscale. The mixing energy is a quantity nowadays unknown in its functional form, so that its prediction may take advantage of machine learning techniques. A support vector regressor is then implemented to successfully predict the mixing energy of AgCu nanoalloys of both sizes. Moreover, with the help of unsupervised learning algorithms, it is shown that the automatic classification of such nanoalloys into different physically meaningful structural families is indeed possible. Finally, thanks to the harmonic superposition approximation, the temperature-dependent probabilities of such structural families are calculated.

11.
J Phys Chem Lett ; 12(19): 4609-4615, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33971714

ABSTRACT

The shape of AuPd nanoparticles is engineered by surface stress relaxation, achieved by varying the Au content in nanoparticles of Pd-rich compositions. AuPd nanoparticles are grown in the gas phase for several compositions and growth conditions. Their structure is atomically resolved by HRTEM/STEM and EDX. In pure Pd distributions the dominant structures are FCC truncated octahedra (TO), while increasing the Au content there is a transition to icosahedral (Ih) structures in which Au atoms are preferentially placed at the nanoparticle surface. The transition is sharper for growth conditions closer to equilibrium. The physical origin of the transition is determined with the aid of computer simulations. Global optimization searches and free energy calculations confirm that Ih become the equilibrium structure for increasing the Au content. Atomic stress calculations demonstrate that the TO → Ih shape change is caused by a better relaxation of anisotropic surface stress in icosahedra.

SELECTION OF CITATIONS
SEARCH DETAIL
...